Thin-Layer Electrochemically Produced SiO2/Ni Composites in a Prototyping Lithium-Ion Battery

  • R. D. ApostolovaEmail author
  • N. A. Matsievskii
  • V. A. Gladun
  • M. O. Savchenko


Silicon dioxide has been produced by deposition from an aqueous solution of Na2SiО3 · mH2O. The particle size of the main faction of the synthesized material determined using an electron microscope ranges from 12 to 16 nm. According to XRD phase analysis, an amorphous modification of silicon dioxide has been obtained. It was then used to synthesize a thin-layer SiO2/Ni composite via electrolysis to determine the possibility of using it in the negative electrodes of miniature LIBs (LIBs). Studies of the SiO2/Ni composite in a prototyping lithium-ion battery in the galvanostatic mode have shown stable cycling in the voltage range from 0.40 to 0.15 V indicating promising usage in LIBs.


silicon dioxide SiO2 amorphous modification nanometer-sized SiO2/Ni composite electrolysis lithium-ion battery 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Tu, J., Yuan, Y, Zhan, P., Jiao, H., et al., J. Phys. Chem. C, 2014, vol. 118, pp. 7357–7362.CrossRefGoogle Scholar
  2. 2.
    Xun, S., Song, X., Wang, L., Grass, M.E., et al., J. Electrochem. Soc., 2011, vol. 158, no. 12, pp. A1260–A1266.CrossRefGoogle Scholar
  3. 3.
    Huang, H., Kelder, E.M., Chen, L., and Schoonman, J., J. Power Sources, 1999, vol. 81, pp. 362–367.CrossRefGoogle Scholar
  4. 4.
    Saint, J., Morcrette, M., Larcher, D., Laffont, L., et al., Adv. Funct. Mater., 2007, vol. 17, no. 11, pp. 1765–1774.CrossRefGoogle Scholar
  5. 5.
    Graetz, J., Ahn, C.C., Yazami, R., and Fultz, B., Electrochem. Solid-State Lett., 2003, vol. 6, no. 9, pp. A194–A197.Google Scholar
  6. 6.
    Guo, B., Shu, J., Wang, Z., Yang, H., et al., Electrochem. Commun., 2008, vol. 10, no. 12, pp. 1876–1878.CrossRefGoogle Scholar
  7. 7.
    Chang, W.-S., Park, C.-M., Kim, J.-H., Kim, Y.-U., et al., Energy Environ. Sci., 2012, vol. 5, pp. 6895–6899.CrossRefGoogle Scholar
  8. 8.
    Sasidharan, M., Liu, D., Gunawardhana, N., Yoshio, M., et al., J. Mater. Chem., 2011, vol. 21, pp. 13881–13888.CrossRefGoogle Scholar
  9. 9.
    Sun, Q., Zhang, B., and Fu, Z.-W., Appl. Surf. Sci., 2008, vol. 254, pp. 3774–3779.CrossRefGoogle Scholar
  10. 10.
    Maciyevskyi, N.A., Apostolova, R.D., Savchenko, M.O., Pieskov, R.P., et al., Promising Materials and Processes in Technical Electrochemistry: Monograph, Kyiv, 2016, pp. 68–72.Google Scholar
  11. 11.
    Iler, R.K., The Chemistry of Silica, New York: Wiley, 1979.Google Scholar
  12. 12.
    Shembel, E.M., Apostolova, R.D., and Nagirnyi, V.M., Russ. J. Electrochem., 2004, vol. 40, no. 1, pp. 36–43.CrossRefGoogle Scholar
  13. 13.
    Apostolova, R.D., Nagirnyi, V.M., and Shembel’, E.M., Russ. J. Electrochem., 1998, vol. 34, no. 7, pp. 698–703.Google Scholar
  14. 14.
    Astrova, E.V., Fedulova, G.V., Smirnova, I.A., Remenyuk, A.D., Kulova, T.L., and Skundin, A.M., Tech. Phys. Lett., 2011, vol. 37, no. 8, pp. 731–734.CrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  • R. D. Apostolova
    • 1
    Email author
  • N. A. Matsievskii
    • 1
  • V. A. Gladun
    • 1
  • M. O. Savchenko
    • 1
  1. 1.Ukrainian State University of Chemical TechnologyDneprUkraine

Personalised recommendations