Advertisement

Surface Engineering and Applied Electrochemistry

, Volume 53, Issue 5, pp 419–433 | Cite as

Recent development of calcium phosphate-based coatings on titanium alloy implants

Article
  • 53 Downloads

Abstract

Titanium alloy implants are widely employed in biomedical devices and components, especially as hard tissue replacements as well as orthopaedic applications, owing to their favourable properties such as high-strength to weight ratio, low density, low Young’s modulus and biocompatibility. However, metallic implants cannot meet all of the clinical requirements. Therefore, in order to increase their clinical success and long term stability in the physiological environment, surface modification is often performed. This review focuses on the latest achievements in the field of surface modification techniques including sol-gel, thermal spray, magnetron sputtering, electrophoretic deposition and micro-arc oxidation of biocompatible calcium phosphates (CaP) based ceramics coatings for metallic implants with emphasis on the structure, morphological characterization, phase transformation and coating composition. A reflection on the results shows that CaP coatings can be grown with the each type of techniques and a stronger fixation can be enhanced with CaP fabrication on metallic implants. Advantages and limitations of the aforementioned techniques of CaP-based coatings from the point of view of the process simplicity as well as the most important challenges of each coating techniques are highlighted. Further, the most promising method for CaP deposition was identified and a specific area for improvement was discussed.

Keywords

titanium alloy implants calcium phosphate surface engineering coating 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Qiao, L., Lou, J., Zhang, S., Qu, B., et al., Surf. Coat. Technol., 2016, vol. 285, pp. 187–196.CrossRefGoogle Scholar
  2. 2.
    Herliansyah, M., Hamdi, M., Ide-Ektessabi, A., Wildan, M., et al., Mater. Sci. Eng., C, 2009, vol. 29, no. 5, pp. 1674–1680.CrossRefGoogle Scholar
  3. 3.
    Teng, H.-P., Yang, C.-J., Lin, J.-F., Huang, Y.-H., et al., Electrochim. Acta, 2016, vol. 193, pp. 216–224.CrossRefGoogle Scholar
  4. 4.
    Narayanan, R., Seshadri, S., Kwon, T., and Kim, K., J. Biomed. Mater. Res., Part B, 2008, vol. 85, no. 10, pp. 279–299.CrossRefGoogle Scholar
  5. 5.
    Heimann, R.B., Surf. Coat. Technol., 2013, vol. 233, pp. 27–38.CrossRefGoogle Scholar
  6. 6.
    Rad, A.T., Solati-Hashjin, M., Osman, N.A.A., and Faghihi, S., Ceram. Int., 2014, vol. 40, no. 8, pp. 12681–12691.CrossRefGoogle Scholar
  7. 7.
    Sivakumar, M. and Manjubala, I., Mater. Lett., 2001, vol. 50, no. 4, pp. 199–205.CrossRefGoogle Scholar
  8. 8.
    Kumar, R.R. and Wang, M., Mater. Lett., 2002, vol. 55, no. 3, pp. 133–137.CrossRefGoogle Scholar
  9. 9.
    Best, S., Porter, A., Thian, E., and Huang, J., J. Eur. Ceram. Soc., 2008, vol. 28, no. 7, pp. 1319–1327.CrossRefGoogle Scholar
  10. 10.
    Currey, J.D., Curr. Opin. Solid State Mater. Sci., 1996, vol. 1, no. 3, pp. 440–445.CrossRefGoogle Scholar
  11. 11.
    Kalita, S.J., Bhardwaj, A., and Bhatt, H.A. Mater. Sci. Eng., C, 2007, vol. 27, no. 3, pp. 441–449.CrossRefGoogle Scholar
  12. 12.
    Koutsopoulos, S., J. Biomed. Mater. Res., Part A, 2002, vol. 62, no. 4, pp. 600–612.CrossRefGoogle Scholar
  13. 13.
    Zhong, Z., Qin, J., and Ma, J., Ceram. Int., 2015, vol. 41, no. 7, pp. 8878–8884.CrossRefGoogle Scholar
  14. 14.
    Kollath, V.O., Chen, Q., Mullens, S., Luyten, J., et al., J. Mater. Sci., 2016, vol. 51, no. 5, pp. 2338–2346.CrossRefGoogle Scholar
  15. 15.
    de Viteri, V.S. and Fuentes, E., Titanium and titanium alloys as biomaterials, in Tribology—Fundamentals and Advancements, Rijeka: InTechOpen, 2013, chap. 5, pp. 155–174. doi 10.5772/55860Google Scholar
  16. 16.
    Choudhury, P. and Agrawal, D., Surf. Coat. Technol., 2011, vol. 206, no. 2, pp. 360–365.CrossRefGoogle Scholar
  17. 17.
    Montenero, A., Gnappi, G., Ferrari, F., Cesari, M., et al., J. Mater. Sci., 2000, vol. 35, no. 11, pp. 2791–2797.CrossRefGoogle Scholar
  18. 18.
    Gross, K. and Berndt, C., J. Biomed. Mater. Res., Part A, 1998, vol. 39, no. 4, pp. 580–587.CrossRefGoogle Scholar
  19. 19.
    Yang, Y.-C., Chang, E., Hwang, B., and Lee, S., Biomaterials, 2000, vol. 21, no. 13, pp. 1327–1337.CrossRefGoogle Scholar
  20. 20.
    Nelea, V., Morosanu, C., Iliescu, M., and Mihailescu, I., Surf. Coat. Technol., 2003, vol. 173, no. 2, pp. 315–322.CrossRefGoogle Scholar
  21. 21.
    Edreira, E.R.U., Wolke, J.G., te Riet, J., Kotnur, G.V., et al., Surf. Coat. Technol., 2015, vol. 266, pp. 177–182.CrossRefGoogle Scholar
  22. 22.
    Shirkhanzadeh, M., J. Mater. Sci. Lett., 1991, vol. 10, no. 23, pp. 1415–1417.CrossRefGoogle Scholar
  23. 23.
    Vijayaraghavan, T. and Bensalem, A., J. Mater. Sci. Lett., 1994, vol. 13, no. 24, pp. 1782–1785.CrossRefGoogle Scholar
  24. 24.
    Duarte, L.T., Biaggio, S.R., Rocha-Filho, R.C., and Bocchi, N., J. Mater. Sci. Mater. Med., 2011, vol. 22, no. 7, pp. 1663–1670.CrossRefGoogle Scholar
  25. 25.
    Gan, J., Tan, L., Yang, K., Hu, Z., et al., J. Mater. Sci. Mater. Med., 2013, vol. 24, no. 4, pp. 889–901.CrossRefGoogle Scholar
  26. 26.
    Ong, J.L. and Chan, D.C., Crit Rev. Biomed. Eng., 2000, vol. 28, nos. 5–6, pp. 667–707.CrossRefGoogle Scholar
  27. 27.
    Zhao, J., Liu, Y., Sun, W.-B., and Zhang, H., Chem. Cent. J., 2011, vol. 5, no. 1, p.1.CrossRefGoogle Scholar
  28. 28.
    Pawlowski, L., The Science and Engineering of Thermal Spray Coatings, New York: Wiley, 2008.CrossRefGoogle Scholar
  29. 29.
    Besra, L. and Liu, M., Prog. Mater. Sci., 2007, vol. 52, no. 1, pp. 1–61.CrossRefGoogle Scholar
  30. 30.
    Boccaccini, A.R. and Zhitomirsky, I., Curr. Opin. Solid State Mater. Sci., 2002, vol. 6, no. 3, pp. 251–260.CrossRefGoogle Scholar
  31. 31.
    Yerokhin, A., Nie, X., Leyland, A., Matthews, A., et al., Surf. Coat. Technol., 1999, vol. 122, no. 2, pp. 73–93.CrossRefGoogle Scholar
  32. 32.
    Martin, P.M., Handbook of Deposition Technologies for Films and Coatings: Science, Applications and Technology, Amsterdam: Elsevier, 2009.Google Scholar
  33. 33.
    Ramaswamy, Y., Wu, C., and Zreiqat, H., Exp. Rev. Med. Devices, 2009, vol. 6, no. 4, pp. 423–430.CrossRefGoogle Scholar
  34. 34.
    Liu, X., Chu, P.K., and Ding, C., Mater. Sci. Eng., R, 2004, vol. 47, no. 3, pp. 49–121.CrossRefGoogle Scholar
  35. 35.
    Newesly, H. and Osborn, J., Structure and texture of calcium phosphate in ceramics, 3rd Conf. on Materials for Use in Medicine and Biology, Manchester: Keele Univ., 1978.Google Scholar
  36. 36.
    Geesink, R.G., de Groot, K., and Klein, C.P. Clin. Orthop. Relat. Res., 1987, vol. 225, pp. 147–170.Google Scholar
  37. 37.
    Søballe, K., Hansen, E.S., Brockstedt-Rasmussen, H., Hjortdal, V.E., et al., J. Arthroplasty, 1991, vol. 6, no. 4, pp. 307–316.CrossRefGoogle Scholar
  38. 38.
    Ji, H. and Marquis, P., Biomaterials, 1993, vol. 14, no. 1, pp. 64–68.CrossRefGoogle Scholar
  39. 39.
    De Bruijn, J., Bovell, Y., and van Blitterswijk, C., Biomaterials, 1994, vol. 15, no. 7, pp. 543–550.CrossRefGoogle Scholar
  40. 40.
    Surmenev, R.A., Surf. Coat. Technol., 2012, vol. 206, no. 8, pp. 2035–2056.CrossRefGoogle Scholar
  41. 41.
    Mohseni, E., Zalnezhad, E., and Bushroa, A., Int. J. Adhes. Adhes., 2014, vol. 48, pp. 238–257.CrossRefGoogle Scholar
  42. 42.
    Levingstone, T.J., Ardhaoui, M., Benyounis, K., et al., Surf. Coat. Technol., 2015, vol. 283, pp. 29–36.CrossRefGoogle Scholar
  43. 43.
    Smith, A.M., Paxton, J.Z., Hung, Y.-P., Hadley, M.J., et al., Mater. Sci. Eng., C, 2015, vol. 48, pp. 5–10.CrossRefGoogle Scholar
  44. 44.
    Ntsoane, T.P., Topic, M., Härting, M., Heimann, R.B., et al., Surf. Coat. Technol., 2016, vol. 294, pp. 153–163.CrossRefGoogle Scholar
  45. 45.
    Kweh, S., Khor, K., and Cheang, P. Biomaterials, 2000, vol. 21, no. 12, pp. 1223–1234.CrossRefGoogle Scholar
  46. 46.
    Holmberg, K. and Mathews, A., Thin Solid Films, 1994, vol. 253, nos. 1–2, pp. 173–178.CrossRefGoogle Scholar
  47. 47.
    Mattox, D.M., Handbook of Physical Vapor Deposition, (PVD) Processing, Amsterdam: Elsevier, 2010, p.2.Google Scholar
  48. 48.
    Ding, S.-J., Biomaterials, 2003, vol. 24, no. 23, pp. 4233–4238.CrossRefGoogle Scholar
  49. 49.
    Jansen, J., Wolke, J., Swann, S., van Der Waerden, J., et al., Clin. Oral Implants Res., 1993, vol. 57, no. 1, pp. 28–34.CrossRefGoogle Scholar
  50. 50.
    Choi, J.-M., Kim, H.-E., and Lee, I.-S., Biomaterials, 2000, vol. 21, no. 5, pp. 469–473.CrossRefGoogle Scholar
  51. 51.
    Burke, E., Haman, J., Weimer, J., Cheney, A., et al., J. Biomed. Mater. Res., Part A, 2001, vol. 57, no. 1, pp. 41–47.CrossRefGoogle Scholar
  52. 52.
    Tisdel, C.L., Goldberg, V.M., Parr, J.A., Bensusan, J.S., et al., J. Bone Joint Surg. Am., 1994, vol. 76, no. 2, pp. 159–171.CrossRefGoogle Scholar
  53. 53.
    Surmeneva, M.A., Surmenev, R.A., Nikonova, Ya., Selezneva, I.I., et al., Appl. Surf. Sci., 2014, vol. 317, pp. 172–180.CrossRefGoogle Scholar
  54. 54.
    Yamashita, K., Arashi, T., Kitagaki, K., Yamada, S., et al., J. Am. Ceram. Soc., 1994, vol. 77, no. 9, pp. 2401–2407.CrossRefGoogle Scholar
  55. 55.
    Wolke, J., van Dijk, K., Schaeken, H., de Groot, K., et al., J. Biomed. Mater. Res., Part A, 1994, vol. 28, no. 12, pp. 1477–1484.CrossRefGoogle Scholar
  56. 56.
    van Dijk, K., Schaeken, H., Wolke, J., and Jansen, J., Biomaterials, 1996, vol. 17, no. 4, pp. 405–410.CrossRefGoogle Scholar
  57. 57.
    van Dijk, K., Schaeken, H., Wolke, J., Maree, C., et al., J. Biomed. Mater. Res., Part A, 1995, vol. 29, no. 2, pp. 269–276.CrossRefGoogle Scholar
  58. 58.
    Xu, S., Long, J., Sim, L., Diong, C.H., et al., Plasma Process. Polym., 2005, vol. 2, no. 5, pp. 373–390.CrossRefGoogle Scholar
  59. 59.
    Takahashi, K., van den Beucken, J., Wolke, J., Hayakawa, T., et al., J. Biomed. Mater. Res., Part A, 2008, vol. 84, no. 3, pp. 682–690.CrossRefGoogle Scholar
  60. 60.
    Boyd, A., Duffy, H., McCann, R., and Meenan, B., Mater. Sci. Eng., C, 2008, vol. 28, no. 2, pp. 228–236.CrossRefGoogle Scholar
  61. 61.
    Yang, Y., Bumgardner, J., Cavin, R., Carnes, D., et al., J. Dent. Res., 2003, vol. 82, no. 6, pp. 449–453.CrossRefGoogle Scholar
  62. 62.
    Yang, Y., Kim, K.-H., and Ong, J.L., Biomaterials, 2005, vol. 26, no. 3, pp. 327–337.CrossRefGoogle Scholar
  63. 63.
    Shukor, B.A., Hamdi, M., Toque, J., and Ide-Ektessabi, A., Key Eng. Mater., 2010, vol. 443, pp. 469–474.CrossRefGoogle Scholar
  64. 64.
    Hayakawa, T., Yoshinari, M., Takahashi, K., and Nemoto, K., J. Oral Tissue Eng., 2004, vol. 1, no. 1, pp. 41–49.Google Scholar
  65. 65.
    Thin Calcium Phosphate Coatings for Medical Implants, Leon, B. and Jansen, J., Eds., New York: Springer-Verlag, 2009, vol.16.Google Scholar
  66. 66.
    Surmenev, R.A., Ryabtseva, M., Shesterikov, E.V., Pichugin, V.F., et al., J. Mater. Sci. Mater. Med., 2010, vol. 21, no. 4, pp. 1233–1239.CrossRefGoogle Scholar
  67. 67.
    Boyd, A., Meenan, B., and Leyland, N., Surf. Coat. Technol., 2006, vol. 200, no. 20, pp. 6002–6013.CrossRefGoogle Scholar
  68. 68.
    Surmeneva, M.A., Surmenev, R.A., Chaikina, M., Kachaev, A., et al., Inorg. Mater.: Appl. Res., 2013, vol. 4, no. 3, pp. 227–235.CrossRefGoogle Scholar
  69. 69.
    Surmeneva, M.A., Chaikina, M.V., Zaikovskiy, V.I., Pichugin, V.F., et al., Surf. Coat. Technol., 2013, vol. 27, pp. 39–46.CrossRefGoogle Scholar
  70. 70.
    Thian, E., Huang, J., Best, S., Barber, Z., et al., Mater. Sci. Eng., C, 2007, vol. 27, no. 2, pp. 251–256.CrossRefGoogle Scholar
  71. 71.
    Ivanova, A.A., Surmenev, R.A., Surmeneva, M.A., Mukhametkaliyev, T., et al., Appl. Surf. Sci., 2015, vol. 329, pp. 212–218.CrossRefGoogle Scholar
  72. 72.
    Chen, W., Liu, Y., Courtney, H., Bettenga, M., et al., Biomaterials, 2006, vol. 27, no. 32, pp. 5512–5517.CrossRefGoogle Scholar
  73. 73.
    López, E.O., Rossi, A.L., Archanjo, B.S., Ospina, R.O., et al., Surf. Coat. Technol., 2015, vol. 264, pp. 163–174.CrossRefGoogle Scholar
  74. 74.
    Variola, F., Brunski, J.B., Orsini, G., de Oliveira, P.T., et al., Nanoscale, 2011, vol. 3, no. 2, pp. 335–353.CrossRefGoogle Scholar
  75. 75.
    López, E.O., Mello, A., Sendão, H., Costa, L.T., et al., ACS Appl. Mater. Interfaces, 2013, vol. 5, no. 19, pp. 9435–9445.CrossRefGoogle Scholar
  76. 76.
    Mello, A., Hong, Z., Rossi, A., Luan, L., et al., Biomed. Mater., 2007, vol. 2, no. 2, pp. 67–72.CrossRefGoogle Scholar
  77. 77.
    Cho, J., Schaab, S., Roether, J.A., and Boccaccini, A.R., J. Nanopart. Res., 2008, vol. 10, no. 1, pp. 99–105.CrossRefGoogle Scholar
  78. 78.
    Thomas, B., Boccaccini, A., and Shaffer, M., J. Am. Ceram. Soc., 2005, vol. 88, no. 4, pp. 980–982.CrossRefGoogle Scholar
  79. 79.
    Ducheyne, P., van Raemdonck, W., Heughebaert, J., et al., Biomaterials, 1986, vol. 7, no. 2, pp. 97–103.CrossRefGoogle Scholar
  80. 80.
    Ducheyne, P., Radin, S., Heughebaert, M. and Heughebaert, J., Biomaterials, 1990, vol. 11, no. 4, pp. 244–254.CrossRefGoogle Scholar
  81. 81.
    Duheyne, P., Beight, J., Cuckler, J., Evans, B., et al., Biomaterials, 1990, vol. 11, no. 8, pp. 531–540.CrossRefGoogle Scholar
  82. 82.
    Boccaccini, A., Cho, J., Subhani, T., Kaya, C., et al., J. Eur. Ceram. Soc., 2010, vol. 30, no. 5, pp. 1115–1129.CrossRefGoogle Scholar
  83. 83.
    van der Biest, O.O. and Vandeperre, L.J., Annu. Rev. Mater. Sci., 1999, vol. 51, no. 1, pp. 327–352.CrossRefGoogle Scholar
  84. 84.
    Pang, X. and Zhitomirsky, I., Mater. Chem. Phys., 2005, vol. 94, no. 2, pp. 245–251.CrossRefGoogle Scholar
  85. 85.
    Zhitomirsky, I. and Gal-Or, L., J. Mater. Sci. Mater. Med., 1997, vol. 51, no. 4, pp. 213–219.CrossRefGoogle Scholar
  86. 86.
    Meng, X., Kwon, T.Y., Yang, Y., Ong, J.L., et al., J. Biomed. Mater. Res., Part B, 2006, vol. 78, no. 2, pp. 373–377.CrossRefGoogle Scholar
  87. 87.
    Kwok, C., Wong, P., Cheng, F., and Man, H., Appl. Surf. Sci., 2009, vol. 255, no. 13, pp. 6736–6744.CrossRefGoogle Scholar
  88. 88.
    Ban, S., Maruno, S., Arimoto, N., Harada, A., et al., J. Biomed. Mater. Res., Part A, 1997, vol. 36, no. 1, pp. 9–15.CrossRefGoogle Scholar
  89. 89.
    Kaya, C., Ceram. Int., 2008, vol. 34, no. 8, pp. 1843–1847.CrossRefGoogle Scholar
  90. 90.
    Wei, M., Ruys, A., Milthorpe, B., and Sorrell, C., J. Mater. Sci. Mater. Med., 2005, vol. 16, no. 4, pp. 319–324.CrossRefGoogle Scholar
  91. 91.
    Xiao, F.-J., Zhang, Y., and Yun, L.-J., Trans. Nonferrous Met. Soc. China, 2009, vol. 19, no. 1, pp. 125–130.CrossRefGoogle Scholar
  92. 92.
    Xiao, X.F. and Liu, R.F., Mater. Lett., 2006, vol. 60, no. 21, pp. 2627–2632.CrossRefGoogle Scholar
  93. 93.
    Chen, F., Lam, W., Lin, C., Qiu, G., et al., J. Biomed. Mater. Res., Part B, 2007, vol. 82, no. 1, pp. 183–191.CrossRefGoogle Scholar
  94. 94.
    Ágata de Sena, L., Calixto de Andrade, M., Malta Rossi, A., and de Almeida Soares, G., J. Biomed. Mater. Res., Part A, 2002, vol. 60, no. 1, pp. 1–7.CrossRefGoogle Scholar
  95. 95.
    Yang, G.-L., He, F.-M., Hu, J.-A., Wang, X.-X., and Zhao, S.-F., J. Oral Maxillofac. Surg., 2010, vol. 68, no. 2, pp. 420–427.CrossRefGoogle Scholar
  96. 96.
    Dumelié, N., Benhayoune, H., Rousse-Bertrand, C., Bouthors, S., et al., Thin Solid Films, 2005, vol. 492, no. 1, pp. 131–139.CrossRefGoogle Scholar
  97. 97.
    Farnoush, H., Aldiç, G., and Çimenoglu, H., Surf. Coat. Technol., 2015, vol. 265, pp. 7–15.CrossRefGoogle Scholar
  98. 98.
    Araghi, A. and Hadianfard, M., Ceram. Int., 2015, vol. 41, no. 10, pp. 12668–12679.CrossRefGoogle Scholar
  99. 99.
    Ustundag, C., Avciata, O., Kaya, F., and Kaya, C., J. Phys. Chem. B, 2012, vol. 117, no. 6, pp. 1571–1576.CrossRefGoogle Scholar
  100. 100.
    Parente, P., Sanchez-Herencia, A., Mesa-Galan, M., and Ferrari, B., J. Phys. Chem. B, 2012, vol. 32, no. 6, pp. 1600–1607.Google Scholar
  101. 101.
    Hu, W., Ma, J., Wang, J., and Zhang, S., Mater. Sci. Eng., C, 2012, vol. 32, no. 8, pp. 2404–2410.CrossRefGoogle Scholar
  102. 102.
    Zhang, B. and Kwok, C.T., J. Mater. Sci. Mater. Med., 2011, vol. 22, no. 10, pp. 2249–2259.CrossRefGoogle Scholar
  103. 103.
    Xiao, X.F., Liu, R.F., and Tang, X.L., J. Mater. Sci. Mater. Med., 2008, vol. 19, no. 1, pp. 175–182.CrossRefGoogle Scholar
  104. 104.
    Cao, N., Dong, J., Wang, Q., Ma, Q., et al., Surf. Coat. Technol., 2010, vol. 205, no. 4, pp. 1150–1156.CrossRefGoogle Scholar
  105. 105.
    Hamdi, M., Hakamata, S., and Ektessabi, A.M., Thin Solid Films, 2000, vol. 377, pp. 484–489.CrossRefGoogle Scholar
  106. 106.
    Lu, X. and Leng, Y., J. Biomed. Mater. Res., Part B, 2009, vol. 90, no. 1, pp. 438–445.Google Scholar
  107. 107.
    Ozeki, K., Yuhta, T., Aoki, H., Nishimura, I., et al., Biomed. Mater. Eng., 2000, vol. 10, pp. 221–227.Google Scholar
  108. 108.
    Faghihi-Sani, M.-A., Arbabi, A., and Mehdinezhad-Roshan, A., Ceram. Int., 2013, vol. 39, no. 2, pp. 1793–1798.CrossRefGoogle Scholar
  109. 109.
    Durdu, S., Deniz, Ö.F., Kutbay, I., and Usta, M., J. Alloy Compd., 2013, vol. 551, pp. 422–429.CrossRefGoogle Scholar
  110. 110.
    Sandhyarani, M., Rameshbabu, N., and Venkateswarlu, K., Surf. Coat. Technol., 2014, vol. 238, pp. 58–67.CrossRefGoogle Scholar
  111. 111.
    Olding, T., Sayer, M., and Barrow, D., Thin Solid Films, 2001, vol. 398, pp. 581–586.CrossRefGoogle Scholar
  112. 112.
    Han, Y., Chen, D., Sun, J., Zhang, Y., et al., Acta Biomater., 2008, vol. 4, no. 5, pp. 1518–1529.CrossRefGoogle Scholar
  113. 113.
    Voevodin, A., Yerokhin, A., Lyubimov, V., Donley, M., et al., Surf. Coat. Technol., 1996, vol. 86, pp. 516–521.CrossRefGoogle Scholar
  114. 114.
    Gupta, P., Tenhundfeld, G., Daigle, E., and Ryabkov, D., Surf. Coat. Technol., 2007, vol. 201, no. 21, pp. 8746–8760.CrossRefGoogle Scholar
  115. 115.
    Rudnev, V., Boguta, D., Yarovaya, T., Morozova, V., et al., Prot. Met., 1999, vol. 35, no. 5, pp. 473–476.Google Scholar
  116. 116.
    Walsh, F., Low, C., Wood, R., Stevens, K., Archer, J., Poeton, A., and Ryder, A., Trans. IMF, 2009, vol. 87, no. 3, pp. 122–135.CrossRefGoogle Scholar
  117. 117.
    Krupa, D., Baszkiewicz, J., Zdunek, J., Smolik, J., et al., Surf. Coat. Technol., 2010, vol. 205, no. 6, pp. 1743–1749.CrossRefGoogle Scholar
  118. 118.
    Li, Q., Liang, J., and Wang, Q., Modern Surface Engineering Treatments, Aliofkhazraei, M., Ed., Rijeka: InTechOpen, 2013. doi 10.5772/55688Google Scholar
  119. 119.
    Rafieerad, A., Ashra, M., Mahmoodian, R., and Bushroa, A., Mater. Sci. Eng., C, 2015, vol. 57, pp. 397–413.CrossRefGoogle Scholar
  120. 120.
    Ishizawa, H. and Ogino, M., J. Biomed. Mater. Res., Part A, 1995, vol. 29, no. 9, pp. 1071–1079.CrossRefGoogle Scholar
  121. 121.
    Ishizawa, H., Fujino, M., and Ogino, M., J. Biomed. Mater. Res., Part A, 1995, vol. 29, no. 11, pp. 1459–1468.CrossRefGoogle Scholar
  122. 122.
    Yang, T.-C., Shu, H.-Y., Chen, H.-T., Chung, C.-J., et al., Surf. Coat. Technol., 2014, vol. 259, pp. 185–192.CrossRefGoogle Scholar
  123. 123.
    Han, Y., Sun, J., and Huang, X., Electrochem. Commun., 2008, vol. 10, no. 4, pp. 510–513.CrossRefGoogle Scholar
  124. 124.
    Abbasi, S., Bayati, M., Golestani-Fard, F., Rezaei, H., et al., Appl. Surf. Sci., 2011, vol. 257, no. 14, pp. 5944–5949.CrossRefGoogle Scholar
  125. 125.
    Zhu, L., Ye, X., Tang, G., Zhao, N., et al., J. Biomed. Mater. Res., Part A, 2007, vol. 83, no. 4, pp. 1165–1175.CrossRefGoogle Scholar
  126. 126.
    Song, W.H., Ryu, H.S., and Hong, S.H., J. Am. Ceram. Soc., 2005, vol. 88, no. 9, pp. 2642–2644.CrossRefGoogle Scholar
  127. 127.
    Wei, D., Zhou, Y., Jia, D., and Wang, Y., Appl. Surf. Sci., 2008, vol. 254, no. 6, pp. 1775–1782.CrossRefGoogle Scholar
  128. 128.
    Song, W.-H., Jun, Y.-K., Han, Y., and Hong, S.-H., Biomaterials, 2004, vol. 25, no. 17, pp. 3341–3349.CrossRefGoogle Scholar
  129. 129.
    Catauro, M., Papale, F., Sapio, L., and Naviglio, S., Mater. Sci. Eng., C, 2016, vol. 65, pp. 188–193.CrossRefGoogle Scholar
  130. 130.
    Jafari, H., Hessam, H., Shahri, S.M.G., Assadian, M., et al., J. Mater. Eng. Perform., 2016, vol. 25, no. 3, pp. 901–909.CrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2017

Authors and Affiliations

  1. 1.Department of Mechanical Engineering, Faculty of EngineeringUniversity of MalayaKuala LumpurMalaysia
  2. 2.Department of Manufacturing and Materials EngineeringInternational Islamic University MalaysiaKuala LumpurMalaysia

Personalised recommendations