Response of the Black Sea Upper Layer to the Cyclone Passage on September 25–29, 2005


The response of the Black Sea upper layer to the quasitropical cyclone on September 25–29, 2005 is studied using the coupled model consisting of the WRF atmosphere model, NEMO ocean model, and OASIS coupler. The circulation arising in the sea under the influence of the quasitropical cyclone is considered. It is demonstrated how sea surface temperature varied under the cyclone during its evolution and movement. The possible mechanisms of the significant (by >10°С) temperature drop under the cyclone are analyzed. It is shown that the main reason for the sea surface cooling is upwelling, i.e., the cold water lifting from the thermocline to the sea surface, and heat exchange with the atmosphere has an insignificant effect on the temperature variation. It is also demonstrated that the value of the sea surface temperature anomaly simulated by the coupled modeling is consistent with observational data much better than the results of atmospheric reanalysis and marine reprocessing.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.


  1. 1

    N. A. Diansky, V. V. Fomin, A. V. Grigoriev, A. V. Chaplygin, and A. G. Zatsepin, “Spatial-temporal Variability of Inertial Currents in the Eastern Part of the Black Sea in a Storm Period,” Morskoi Gidrofizicheskii Zhurnal, No. 2, 35 (2019) [Phys. Oceanogr., No. 2, 26 (2019)].

  2. 2

    V. V. Efimov and V. S. Barabanov, “Anomalies of the Black Sea Surface Temperature and Modeling of Intense Cold Anomaly Formation in September 2014,” Izv. Akad. Nauk, Fiz. Atmos. Okeana, No. 3, 53 (2017) [Izv., Atmos. Oceanic Phys., No. 3, 53 (2017)].

  3. 3

    V. V. Efimov, S. V. Stanichnyi, M. V. Shokurov, and D. A. Iarovaya, “Observations of a Quasi-tropical Cyclone over the Black Sea,” Meteorol. Gidrol., No. 4 (2008) [Russ. Meteorol. Hydrol., No. 4, 33 (2008)].

  4. 4

    V. V. Efimov, M. V. Shokurov, and D. A. Iarovaya, “Numerical Simulation of a Quasi-tropical Cyclone over the Black Sea,” Izv. Akad. Nauk, Fiz. Atmos. Okeana, No. 6, 43 (2007) [Izv., Atmos. Oceanic Phys., No. 6, 43 (2007)].

  5. 5

    A. G. Zatsepin, V. I. Baranov, A. A. Kondrashov, A. O. Korzh, V. V. Kremenetskiy, A. G. Ostrovskii, and D. M. Soloviev, “Submesoscale Eddies at the Caucasus Black Sea Shelf and the Mechanisms of Their Generation,” Okeanologiya, No. 4, 51 (2011) [Oceanology, No. 4, 51 (2011)].

  6. 6

    A. G. Zatsepin, V. V. Kremenetskiy, V. B. Piotukh, S. G. Poyarkov, Yu. B. Ratner, D. M. Soloviev, R. R. Stanichnaya, S. V. Stanichny, and V. G. Yakubenko, “Formation of the Coastal Current in the Black Sea Caused by Spatially Inhomogeneous Wind Forcing upon the Upper Quasi-Homogeneous Layer,” Okeanologiya, No. 2, 48 (2008) [Oceanology, No. 2, 48 (2008)].

  7. 7

    A. I. Mizyuk, M. V. Senderov, G. K. Korotaev, and A. S. Sarkysyan, “Features of the Horizontal Variability of the Sea Surface Temperature in the Western Black Sea from High Resolution Modeling,” Izv. Akad. Nauk, Fiz. Atmos. Okeana, No. 5, 52 (2016) [Izv., Atmos. Oceanic Phys., No. 5, 52 (2016)].

  8. 8

    M. A. Bender and I. Ginis, “Real-case Simulations of Hurricane–Ocean Interaction Using a High-resolution Coupled Model: Effects on Hurricane Intensity,” Mon. Wea. Rev., 128 (2000).

  9. 9

    B. N. Nardelli, C. Tronconi, A. Pisano, and R. Santoleri, “High and Ultra-high Resolution Processing of Satellite Sea Surface Temperature Data over Southern European Seas in the Framework of MyOcean Project,” Rem. Sens. Environ., 129 (2013).

  10. 10

    D. P. Dee, S. M. Uppala, A. J. Simmons, P. Berrisford, P. Poli, S. Kobayashi, U. Andrae, M. A. Balmaseda, G. Balsamo, P. Bauer, P. Bechtold, A. C. M. Beljaars, L. van de Berg, J. Bidlot, N. Bormann, C. Delsol, R. Dragani, M. Fuentes, A. J. Geer, L. Haimberger, S. B. Healy, H. Hersbach, E. V. Hylm, L. Isaksen, P. Kellberg, M. Kohler, M. Matricardi, A. P. McNally, B. M. Monge-Sanz, J.-J. Morcrette, B.-K. Park, C. Peubey, P. de Rosnay, C. Tavolato, J.-N. Thepaut, and F. Vitart, “The ERA-Interim Reanalysis: Configuration and Performance of the Data Assimilation System,” Quart. J. Roy. Meteorol. Soc., No. 656, 137 (2011).

  11. 11

    D.-Y. Li and C.-Y. Huang, “The Influences of Ocean on Intensity of Typhoon Soudelor (2015) as Revealed by Coupled Modeling,” Atmos. Sci. Lett., No. 1, 20 (2019).

  12. 12

    R. Halliwell Jr., L. K. Shay, J. K. Brewster, and W. J. Teague, “Evaluation and Sensitivity Analysis of an Ocean Model Response to Hurricane Ivan,” Mon. Wea. Rev., No. 3, 139 (2011).

  13. 13

    P. A. Jimenez, J. Dudhia, J. F. Gonzalez-Rouco, J. Navarro, J. P. Montavez, and E. Garcia-Bustamante, “A Revised Scheme for the WRF Surface Layer Formulation,” Mon. Wea. Rev., 140 (2012).

  14. 14

    Madec G. and the NEMO Team, NEMO Ocean Engine. Notes de Pole de Modelisation (Inst. Pierre-Simon Laplace, Paris, France, 2008).

  15. 15

    J. F. Price, “Upper Ocean Response to a Hurricane,” J. Phys. Oceanogr., 11 (1981).

  16. 16

    J. F. Price, T. B. Sanford, and G. Z. Forristall, “Forced Stage Response to a Moving Hurricane,” J. Phys. Oceanogr., 24 (1994).

  17. 17

    W. Rodi, “Examples of Calculation Methods for Flow and Mixing in Stratified Fluids,” J. Geophys. Res., No. C5, 92 (1987).

  18. 18

    S. Saha, S. Moorthi, X. Wu, J. Wang, S. Nadiga, P. Tripp, D. Behringer, Y. Hou, H.-Y. Chuang, M. Iredell, M. Ek, J. Meng, R. Yang, M. Mendez, H. V. D. Dool, Q. Zhang, W. Wang, M. Chen, and E. Becker, “The NCEP Climate Forecast System Version 2,” J. Climate, 27 (2014).

  19. 19

    G. Samson, S. Masson, M. Lengaigne, M. Keerthi, J. Vialard, S. Pous, G. Madec, N. Jourdain, S. Jullien, C. Menkes, and P. Marchesiello, “The NOW Regional Coupled Model: Application to the Tropical Indian Ocean Climate and Tropical Cyclone Activity,” J. Adv. Model. Earth Systems, 6 (2014).

  20. 20

    L. R. Schade and K. A. Emanuel, “The Ocean’s Effect on the Intensity of Tropical Cyclones: Results from a Simple Coupled Atmosphere–Ocean Model,” J. Atmos. Sci., 56 (1999).

  21. 21

    W. C. Skamarock, J. B. Klemp, J. Dudhia, D. O. Gill, D. Barker, M. G. Duda, X.-Y. Huang, and W. A. Wang, A Description of the Advanced Research WRF Version 3, NCAR Technical Note (2008).

  22. 22

    S. Valcke, “The OASIS3 Coupler: A European Climate Modelling Community Software,” Geosci. Model Dev., No. 2, 6 (2013).

  23. 23

  24. 24

  25. 25

Download references


The work by D.A. Iarovaya, V.V. Efimov, and V.S. Barabanov was performed in the framework of the grant 0827-2018-0001 “Fundamental Studies of Interaction Processes in the Ocean–Atmosphere System That Determine Regional Spatiotemporal Variability of Natural Environment and Climate” (code “Ocean–Atmosphere Interaction”). The work by A.I. Mizyuk was performed in the framework of the Governmental Assignment theme 0827-2018-0002 “Developing Operational Oceanology Methods Based on Interdisciplinary Studies of Formation and Evolution of Marine Environment and Mathematical Modeling Using Remote and Contact Measurement Data” (code “Operational Oceanology”).

Author information



Corresponding author

Correspondence to D. A. Iarovaya.

Additional information

Russian Text ©The Author(s), 2020, published in Meteorologiya i Gidrologiya, 2020, No. 10, pp. 38-52.

About this article

Verify currency and authenticity via CrossMark

Cite this article

Iarovaya, D.A., Efimov, V.V., Barabanov, V.S. et al. Response of the Black Sea Upper Layer to the Cyclone Passage on September 25–29, 2005. Russ. Meteorol. Hydrol. 45, 701–711 (2020).

Download citation


  • Coupled modeling
  • Quasitropical cyclone
  • Black Sea
  • Upwelling
  • Sea surface temperature anomaly