Influence of the North Atlantic Oscillation on the Heat Budget of the Mixed Layer in the North Atlantic


The heat budget components that are involved in the formation of the tripole structure of the upper mixed layer (UML) temperature anomalies in the North Atlantic under the influence of the North Atlantic Oscillation (NAO) are analyzed using ORA-S3 oceanic reanalysis data for the winter period in 1959–2011. It is shown that the negative UML temperature anomaly in the western part of the tropical zone during the NAO intensification is mainly due to the anomalies of horizontal heat advection and eddy heat diffusion (i.e., nonlocal factors), as well as due to anomalous heat fluxes on the ocean surface (although with a lower significance level). Antiphase changes in the UML temperature in the eastern part of the tropical zone and in the western part of the subtropical zone are accompanied by the anomalies of the heat budget components of the opposite sign. In the subpolar zone, the anomalies of nonlocal components of heat budget also make significant contribution to the UML temperature variation which is in-phase with the one in the tropics. In the high-latitude areas of deep convection, the anomalous heat fluxes at the UML base are also important, and in the eastern part of the subpolar gyre, the anomalies of the net heat fluxes on the ocean surface are crucial too. The signs of the anomalies of the UML heat budget components forming the UML temperature fields in the North Atlantic during the periods with high and low values of the NAO index are opposite.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.


  1. 1

    G. F. Dzhiganshin and A. B. Polonsky, “Interannual and Interdecadal Variations in the Upper 200-meter Heat Content in the Tropical Atlantic over 1950–1992,” Izv. Akad. Nauk, Fiz. Atmos. Okeana, No. 2, 37 (2001) [Izv., Atmos. Oceanic Phys., No. 2, 37 (2001)].

  2. 2

    E. S. Nesterov, “Influence of the North Atlantic Oscillation on the Sea-surface Temperature,” Meteorol. Gidrol., No. 5 (1992) [Russ. Meteorol. Hydrol., No. 5 (1992)].

  3. 3

    E. S. Nesterov, The North Atlantic Oscillation: Atmosphere and Ocean (Triada, Moscow, 2013) [in Russian].

  4. 4

    A. B. Polonskii, Horizontally Inhomogeneous Oceanic Active Layer and Its Modeling (VNIIGMI-MTsD, Sevastopol–Obninsk, 1989) [in Russian].

  5. 5

    A. B. Polonskii, D. V. Basharin, E. N. Voskresenskaya, and S. Worley, “The North Atlantic Oscillation: Description, Mechanisms, and Influence on the Eurasian Climate,” Morskoi Gidrofizicheskii Zhurnal, No. 2 (2004) [Phys. Oceanogr., 14 (2004)].

  6. 6

    A. B. Polonsky and P. A. Sukhonos, “On the Contribution of the Eddy Transport to the Annual Mean Heat Budget of the Upper Layer in the North Atlantic,” Izv. Akad. Nauk, Fiz. Atmos. Okeana, No. 5,54 (2018) [Izv., Atmos. Oceanic Phys., No. 5,54 (2018)].

  7. 7

    M. A. Balmaseda, A. Vidard, and D. L. T. Anderson, “The ECMWF Ocean Analysis System: ORA-S3,” Mon. Wea. Rev., No. 8,136 (2008).

  8. 8

    A. G. Barnston and R. E. Livezey, “Classification, Seasonality, and Persistence of Low-frequency Atmospheric Circulation Patterns,” Mon. Wea. Rev., No. 6, 115 (1987).

  9. 9

    D. S. Battisti, U. S. Bhatt, and M. A. Alexander, “A Modeling Study of the Interannual Variability in the Wintertime North Atlantic Ocean,” J. Climate, No. 12, 8 (1995).

  10. 10

    J. Bjerknes, “Atlantic Air–Sea Interaction,” Adv. Geophys.,10 (1964).

  11. 11

    A. F. Bunker, “Computations of Surface Energy Flux and Annual Air–Sea Interaction Cycles of the North Atlantic Ocean,” Mon. Wea. Rev., No. 9, 104 (1976).

  12. 12

    J. J. M. Busecke and R. P. Abernathey, “Ocean Mesoscale Mixing Linked to Climate Variability,” Sci. Adv., No. 1, 5 (2019).

  13. 13

    D. R. Cayan, “Latent and Sensible Heat Flux Anomalies over the Northern Oceans: Driving the Sea Surface Temperature,” J. Phys. Oceanogr., No. 8, 22 (1992).

  14. 14

    T. L. Delworth, F. Zeng, L. Zhang, R. Zhang, G. A. Vecchi, and X. Yang, “The Central Role of Ocean Dynamics in Connecting the North Atlantic Oscillation to the Extratropical Component of the Atlantic Multidecadal Oscillation,” J. Climate, No. 10, 30 (2017).

  15. 15

    D. B. Enfield and D. A. Mayer, “Tropical Atlantic Sea Surface Temperature Variability and Its Relation to El Niño–Southern Oscillation,” J. Geophys. Res.: Oceans, No. C1, 102 (1997).

  16. 16

    G. R. Halliwell Jr., “Simulation of North Atlantic Decadal/Multidecadal Winter SST Anomalies Driven by Basin-scale Atmospheric Circulation Anomalies,” J. Phys. Oceanogr., No. 1,28 (1998).

  17. 17

    J. W. Hurrell, “Influence of Variations in Extratropical Wintertime Teleconnections on Northern Hemisphere Temperature,” Geophys. Res. Lett., No. 6, 23 (1996).

  18. 18

    M. M. Junge and T. W. N. Haine, “Mechanisms of North Atlantic Wintertime Sea Surface Temperature Anomalies,” J. Climate, No. 24,14 (2001).

  19. 19

    S. A. Klein, B. J. Soden, and N.-C. Lau, “Remote Sea Surface Temperature Variations during ENSO: Evidence for a Tropical Atmospheric Bridge,” J. Climate, No. 4, 12 (1999).

  20. 20

    H. Machel, A. Kapala, and H. Flohn, “Behaviour of the Centres of Action above the Atlantic since 1881. Part I: Characteristics of Seasonal and Interannual Variability,” Int. J. Climatol., No. 1,18 (1998).

  21. 21

    Modeling and Prediction of the Upper Layers of the Ocean, Ed. by E. B. Kraus (Pergamon, Oxford, 1977).

  22. 22

    E. K. Schneider and M. Fan, “Observed Decadal North Atlantic Tripole SST Variability. Part II: Diagnosis of Mechanisms,” J. Atmos. Sci., No. 1, 69 (2012).

  23. 23

    S. M. Uppala, P. W. Kallberg, A. J. Simmons, U. Andrae, V. da Costa Bechtold, M. Fiorino, J. Gibson, J. Haseler, A. Hernandez, G. Kelly, X.-M. Li, K. Onogi, S. Saarinen, N. Sokka, R. P. Allan, E. Andersson, K. Arpe, M. A. Balmaseda, A. C. M. Beljaars, L. van de Berg, J.-R. Bidlot, N. Bormann, S. Caires, F. Chevallier, A. Dethof, M. Dragosavac, M. A. Fisher, M. A. C. Fuentes, S. Hagemann, E. Holm, B. J. Hoskins, L. Isaksen, P. A. E. M. Janssen, R. L. Jenne, A. P. McNally, J.-F. Mahfouf, J.-J. Morcrette, N. A. Rayner, R. S. Saunders, P. Simon, A. Sterl, K. E. Trenberth, A. S. Untch, D. Vasiljevic, P. Viterbo, and J. S. Woollen, “The ERA-40 Re-analysis,” Quart. J. Roy. Meteorol. Soc., No. 612, 131 (2005).

  24. 24

    G. T. Walker and E. W. Bliss, “World Weather V,” Mem. Roy. Meteorol. Soc., 4 (1932).

  25. 25

    J.-O. Wolff, E. Maier-Reimer, and S. Legutke, The Ocean Primitive Equation Model. Tech. Rep. No. 13 (German Climate Computer Center (DKRZ), Hamburg, 1997).

Download references


The authors thank an anonymous reviewer for friendly and constructive criticism of the first version of the paper.

Author information



Corresponding author

Correspondence to A. B. Polonskii.

Additional information

Russian Text ©The Author(s), 2020, published in Meteorologiya i Gidrologiya, 2020, No. 9, pp. 27-36.

About this article

Verify currency and authenticity via CrossMark

Cite this article

Polonskii, A.B., Sukhonos, P.A. Influence of the North Atlantic Oscillation on the Heat Budget of the Mixed Layer in the North Atlantic. Russ. Meteorol. Hydrol. 45, 623–629 (2020).

Download citation


  • North Atlantic Oscillation
  • Upper mixed layer
  • Heat budget
  • North Atlantic