Skip to main content
Log in

Stratospheric Circulation Modeling with the SL-AV Semi-Lagrangian Atmospheric Model

  • Published:
Russian Meteorology and Hydrology Aims and scope Submit manuscript

Abstract

The article describes the development of the version of the SL-AV global semi-Lagrangian atmospheric model with high spatial resolution in the stratosphere. The new model version uses the vertical grid of 100 levels, grid spacing of 500 m in the layer between 100 and 10 hPa, and the upper lid at 0.04 hPa. The parameterization of the non-orographic gravity wave drag is implemented. Numerous modifications are introduced in the block for the numerical solution of dynamical equations to enhance model stability. The experiment on atmospheric dynamics modeling for 28 years is carried out. It is shown that the SL-AV model reproduces the main features of stratospheric circulation, such as the polar night stratospheric jet formation and sudden stratospheric warming. The quasi-biennial oscillation of equatorial wind is reproduced with realistic period and amplitude.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. N. Vargin, E. M. Volodin, A. Yu. Karpechko, and A. I. Pogoreltsev, “Stratosphere–Troposphere Interactions,” Vestnik RAN, No. 1, 85 (2015) [Herald of the Russian Academy of Sciences, No. 1, 85 (2015)].

    Google Scholar 

  2. D. V. Kulyamin, E. M. Volodin, and V. P. Dymnikov, “Simulation of the Quasi–biennial Oscillations of the Zonal Wind in the Equatorial Stratosphere: Part II. Atmospheric General Circulation Models,” Fiz. Atmos. Okeana. No. 1, 45 (2009) [Izv. Atmos. Oceanic Physics, No. 1, 45 (2009)].

    Google Scholar 

  3. D. V. Kulyamin and V. P. Dymnikov, “Spectral Characteristics of Quasi–biennial Oscillations of the Equatorial Stratospheric Wind and the Problem of Synchronization,” Fiz. Atmos. Okeana, No. 4, 46 (2010) [Izv. Atmos. Oceanic Physics, No. 4, 46 (2010)].

    Google Scholar 

  4. M. A. Tolstykh, J.–F. Geleyn, E. M. Volodin, N. N. Bogoslovskii, R. M. Vilfand, D. B. Kiktev, T. V. Krasjuk, S. V. Kostrykin, V. G. Mizyak, R. Yu. Fadeev, V. V. Shashkin, A. V. Shlyaeva, I. N. Ezau, and A. Yu. Yurova, “Development of the Multiscale Version of the SL–AV Global Atmosphere Model,” Meteorol. Gidrol., No. 6 (2015) [Russ. Meteorol. Hydrol., No. 6, 40 (2015)].

  5. M. A. Tolstykh, R. Yu. Fadeev, V. V. Shashkin, G. S. Goyman, R. B. Zaripov, D. B. Kiktev, S. V. Makhnorylova, V. G. Mizyak, and V. S. Rogutov, “Multiscale Global Atmosphere Model SL–AV: The Results of Medium–range Weather Forecasts,” Meteorol. Gidrol., No. 11 (2018) [Russ. Meteorol. Hydrol., No. 11, 43 (2018)].

  6. M. A. Tolstykh, V. V. Shashkin, R. Yu. Fadeev, A. V. Shlyaeva, V. G. Mizyak, V. S. Rogutov, N. N. Bogoslovskii, G. S. Goyman, S. V. Makhnorylova, and A. Yu. Yurova, Atmosphere Modelling Systemfor Seamless Prediction (Triada Ltd, Moscow, 2017) [in Russian].

    Google Scholar 

  7. V. V. Shashkin, “Forecast of Polar Stratospheric Vortex Dynamics Using the SL–AV Global Atmospheric Model,” Meteorol. Gidrol., No. 3 (2018) [Russ. Meteorol. Hydrol., No. 3, 43 (2018)].

    Google Scholar 

  8. M. Baldwin, L. Gray, T. Dunkerton, K. Hamilton, P. Haynes, W. Randel, J. Holton, M. Alexander, I. Hirota, T. Horinouchi, D. Jones, J. Kinnersley, C. Marquardt, K. Sato, and M. Takahashi, “The Quasi–biennial Oscillation,” Rev. Geophys., 39 (2003).

  9. M. Baldwin, D. Thompson, E. Shuckburgh, W. Norton, and N. Gillett, “Weather from Stratosphere?”, Science, 301 (2003).

  10. J. Bates, S. Moorthi, and R. Higgins, “A Global Multi–level Atmospheric Model Using a Vector Semi–Lagrangian Finite–difference Scheme. Part I: Adiabatic Formulation,” Mon. Wea. Rev, 121 (1993).

  11. C. Bell, L. Gray, A. Gharlton–Perez, M. Joshi, and A. Scaife, “Stratospheric Communicalion of El Nino Teleconnections to European Winter,” J. Climate, 22 (2009).

  12. A. Butler, D. Seidel, S. Hardiman, N. Butchart, and A. Match, “Defining Sudden Stratospheric Warmings,” Bull. Amer. Meteorol. Soc., 96 (2015).

  13. B. Catry, J.–F. Geleyn, F. Bouyssel, J. Cedilnik, R. Brozkova, M. Derkova, and R. Mladek, “A New Sub–grid Scale Lift Formulation in a Mountain Drag Parameterisation Scheme,” Meteorol. Zeitschrift, 17 (2008).

  14. A. Charlton and L. Polvani, “A New Look at Stratospheric Sudden Warmings. Part I: Climatology and Modeling Benchmarks,” J. Climate, 20 (2007).

  15. A. J. Charlton–Perez, M. P. Baldwin, T. Birner, R. X. Black, et al., “On the Lack of Stratospheric Dynamical Variabil ity in Lowtop Versions of the CMIP5 Models,” J. Geophys. Res., 118 (2013).

  16. M. Diamantakis, “Improving ECMWF Forecast of Sudden Stratospheric Warmings,” ECMWF Newsletter, 141 (2014), https://www.ecmwf.int/en/elibrary/173 3 6–improving–ecmwf–forecasts–sudden–stratospheric–warmings.

  17. C. O. Hines, “Doppl er Spread Parameterization of Gravity Wave Momentum Deposition in the Middle Atmosphere. Part 1: Basic Formulation,” J. Atmos. Terr. Phys., No. 4, 59 (1997).

    Google Scholar 

  18. J. R. Holton, In tro duction to Dy namic Me te o rology, 4th ed. (Elsevier, 2004).

    Google Scholar 

  19. J. R. Holton and H.–C. Tan, “The Quasi–biennial Oscillation in the Northern Hemisphere Lower Stratosphere,” J. Meteorol. Soc. Japan, 60 (1982).

  20. M. Hortal, “The Development and Testing of a New Two–time–level Semi–Lagrangian Scheme (SETTLS) in the ECWMF Forecast Model,” Quart. J. Roy. Meteorol. Soc., 128 (2002).

  21. IFS Documentation CY43R1, Part IV: Physical Processes, https://www.ecmwf.int/en/elibrary/17117–part–iv–physical–processes, 2016.

  22. J. Kidston, A. Scaife, S. Hardiman, D. Mitchell, N. Butchart, M. Baldwin, and L. Gray, “Stratospheric Influence on Tropospheric Jet Streams, Storm Tracks and Surface Weather,” Nature Geosci., No. 6, 8 (2015).

    Google Scholar 

  23. E. Kolstad, T. Breiteig, and A. Scaife,“The Association between Stratospheric Weak Polar Vortex Events and Cold Air Outbreaks in the Northern Hemisphere,” Quart. J. Roy. Meteorol. Soc., 136 (2010).

  24. G. Manney, Z. Lawrence, M. Santee, W. Read, N. Livesey, A. Lambert, L. Froidevaux, H. Pumphrey, and M. Schwartz, “A Minor Sudden Stratospheric Warming with a Major Impact: Transport and Polar Processing in the 2014/2015 Arctic Winter,” Geophys. Res. Lett., 42 (2015).

  25. T. Mlynarz, Parametrisation du Frottement des Ondes de Gravite Orographiques~Hypothese de Resonance (Rapport de stage, Meteo France, Centre de Recherches en Meteorologie Dynamique (CRMD), Juin–Aout Maitrise de Physique et Applications, Universite P. et M. Curie, Paris, 1990).

    Google Scholar 

  26. A. Robert, “A Semi–Lagrangian and Semi–implicit Numerical Integration Scheme for the Primitive Meteorological Equations,” J. Meteorol. Soc. Japan, No. 1, Ser. II, 60 (1982).

  27. M. Sigmond, J. F. Scinocca, V. V. Kharin, and T. G. Shepherd, “Enhanced Seasonal Forecast Skill Following Stratospheric Sudden Warmings,” Nature Geosci., 6 (2013).

  28. P. Termonia, C. Fischer, E. Bazile, F. Bouyssel, R. Brozcaronkova, P. Benard, B. Bochenek, D. Degrauwe. M. Derkova, R. E. Khatib, R. Hamdi, J. Masek, P. Pottier, N. Pristov, Y. Seity, P. Smolikova, O. Spaniel, M. Tudor, Y. Wang, C. Wittmann, and A. Joly, “The ALADIN Sysiem and Its Canonical Model Configurations AROME CY41T1 and ALARO CY40T1,” Geosci. Model Develop., 11 (2018).

  29. M. Tolstykh, V. Shashkin, R. Fadeev, and G. Goyman, “Vorticity–divergence Semi–Lagrangian Global Atmospheric Model SL–AV20: Dynamical Core,” Geosci. Model Dev., 10 (2017).

  30. L. Tomassini et al., “The Role of Stratosphere Troposphere Coupling in the Occurrence of Extreme Winter Cold Spells over Northern Europe,” J. Advances in Modeling Earth Systems, M00A03, 4 (2012).

  31. C. Tsay, “Analysis of Large–scale Wave Disturbances in the Tropics Simulated by an NCAR Global Circulation Model,” J. Atmos. Sci., No. 2, 31 (1974).

    Google Scholar 

  32. E. Volodin, E. Mortikov, S. Kostrykin, V. Galin, V. Lykossov, A. Gritsun, N. Diansky, A. Gusev, and N. Iakovlev, “Simulation of the Present–day Climate with the Climate Model INMCM5,” Climate Dynamics, No. 11–12, 49 (2017).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Shashkin.

Additional information

Russian Text © V.V. Shashkin, M.A. Tolstykh, E.M. Volodin, 2019, published in Meteorologiya i Gidrologiya, 2019, No. 1, pp. 5–21.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shashkin, V.V., Tolstykh, M.A. & Volodin, E.M. Stratospheric Circulation Modeling with the SL-AV Semi-Lagrangian Atmospheric Model. Russ. Meteorol. Hydrol. 44, 1–12 (2019). https://doi.org/10.3103/S1068373919010011

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068373919010011

Keywords

Navigation