Russian Meteorology and Hydrology

, Volume 43, Issue 2, pp 63–71 | Cite as

Equilibrium State of the Greenland Ice Sheet in the Earth System Model

  • O. O. Rybak
  • E. M. Volodin
  • P. A. Morozova
  • P. Huybrechts
Article
  • 4 Downloads

Abstract

Currently, the Earth system models are widely used for studying present-day climate dynamics and for palaeoreconstructions. A full Earth system model should include dynamical ice sheet models of Greenland and Antarctica as subsystems. To couple the latters with the atmospheric and with the oceanic blocks, it is necessary to introduce a special procedure to sustain mutual data exchange between subsystems with different temporal and spatial scales. In this paper, we give a brief description of the blocks of the Earth system model developed in the Institute of Numerical Mathematics of RAS (INMCM). On the basis of the previous studies aimed at examination of sensitivity of the cryospheric block of the model to variations in the key model parameters, we carried out numerical experiments to prove stability of the model climate and to establish equilibration time of the Greenland ice sheet to the conventional pre-industrial climate. It was confirmed that our Earth System Model with the interactively and asynchronously coupled Greenland ice sheet model simulates stationary climate. Equilibration time of the Greenland ice sheet is nearly 20 thousand model years. It was demonstrated that the values of calculated surface mass balance and its components correspond to similar model results described in the literature.

Keywords

Greenland climate mathematical model Earth system model ice sheet mass balance runoff 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. A. Alekseev, E. M. Volodin, V. Ya. Galin, et al., The Modeling of Present-day Climate Using Atmospheric Model of INMRAS, Preprint of INM No. 2086-B98 (INM, Moscow, 1998) [in Russian].Google Scholar
  2. 2.
    V. V. Alekseev and V. B. Zalesny, “The Numerical Model of the Large Scale Dynamics of the Ocean,” in Computational Processes and Systems, Ed. by G. I. Marchuk (Nauka, Moscow, 1984), No.10.Google Scholar
  3. 3.
    A. V. Bagno, R. V. Garaschyuk, and V. B. Zalesny, “A Model of the Large-scale Ocean Circulation and Sea Ice Evolution,” Okeanologiya, No. 2, 36 (1996) [Oceanology, No. 2, 36 (1996)].Google Scholar
  4. 4.
    E. M. Volodin and N. A. Diansky, “Responce of a Coupled Atmosphere-Ocean General Circulation Model to Increased Carbon Dioxide,” Izv. Akad. Nauk, Fiz. Atmos. Okeana, No. 2, 39 (2003) [Izv. Atmos. Ocean. Phys., No. 2, 39 (2003)].Google Scholar
  5. 5.
    E. M. Volodin and V. H. Lykossov, “Parameterization of Heat and Moisture Transfer in a Soil-vegetation System for Use in Atmospheric General Circulation Models. 1. Formulation and Simulations Based on Local Observational Data,” Izv. Akad. Nauk, Fiz. Atmos. Okeana, No. 4, 34 (1998) [Izv. Atmos. Ocean. Phys., No. 4, 34 (1998)].Google Scholar
  6. 6.
    V. Ya. Galin, “Parameterization of Radiative Processes in the DNM Atmospheric Model of INM,” Izv. Akad. Nauk, Fiz. Atmos. Okeana, No. 3, 34 (1998) [Izv. Atmos. Ocean. Phys., No. 3, 34 (1998)].Google Scholar
  7. 7.
    N. A. Diansky, A. V. Bagno, and V. B. Zalesny, “Sigma-model of Global Ocean Circulation and Its Sensitivity to Variations in Wind Stress,” Izv. Akad. Nauk, Fiz. Atmos. Okeana, No. 4, 38 (2002) [Izv. Atmos. Ocean. Phys., No. 4, 38 (2002].Google Scholar
  8. 8.
    N. A. Diansky and E. A. Volodin, “Simuiation of Present-day Climate with a Coupled Atmosphere-Ocean General Circulation Model,” Izv. Akad. Nauk, Fiz. Atmos. Okeana, No. 6, 38 (2002) [Izv. Atmos. Ocean. Phys., No. 6, 38 (2002].Google Scholar
  9. 9.
    O. O. Rybak and E. M. Volodin, “Applying the Energy-and Water Balance Model for Incorporation of the Cryospheric Component into a Climate Model. Part I. Description of the Model and Computed Climatic Fields of Surface Air Temperature and Precipitation Rate,” Meteorol. Gidrol., No. 11 (2015) [Russ. Meteorol. Hydrol., No.11, 40 (2015)].Google Scholar
  10. 10.
    O. O. Rybak, E. M. Volodin, and A. P. Nevecherja, “Geothermal Heat Flux in Greenland and Its Influence upon the Model Ice Sheet Topography,” Led i Sneg, No. 4, 55 (2015) [in Russian].Google Scholar
  11. 11.
    O. O. Rybak, E. M. Volodin, A. P. Nevecherja, and P. A. Morozova, “Applying the Energy-and Water Balance Model for Incorporation of the Cryospheric Component into a Climate Model. Part II. Modeled Mass Balance on the Greeni and Ice Sheet Sur face,” Meteorol. Gidrol., No. 6, 41 (2016) [Russ. Meteorol. Hydrol., No. 6, 41 (2016)].Google Scholar
  12. 12.
    O. O. Rybak, E. M. Volodin, A. P. Nevecherja, et al., “Calculation of Mass Discharge of the Greenland Ice Sheet in the Earth System Model,” Led i Sneg, No. 3, 56 (2016) [in Russian].Google Scholar
  13. 13.
    N. G. Yakovlev, “Coupled Model of Ocean General Circuiation and Sea Ice Evoiution,” Izv. Akad Nauk, Fiz. Atmos. Okeana, No. 3, 39 (2003) [Izv. Atmos. and Oceanic Physics, No. 3, 39 (2003)].Google Scholar
  14. 14.
    J. Adem, “Numerical Simulation of the Annual Cycle of Climate during the Ice Ages,” J. Geophys. Res., 86 (1981).Google Scholar
  15. 15.
    A. Arakawa and V. Lamb, “Computational Design of the Basic Dynamical Processes of the UCLA General Circulation Model,” in Methods in Computational Physics, Ed. by J. Chang, Vol. 17 (Academic Press, San Francisco, 1977).Google Scholar
  16. 16.
    J. L. Bamber, S. Ekholm, and W. B. Krabill, “A New, High Resolution Digial Elevation Model of Greenland Fully Validated with Airborne Laser Altimeter Data,” J. Geophys. Res., 106 (2001).Google Scholar
  17. 17.
    A. K. Betts, “A New Convective Adjustment Scheme. Part I. Observational and Theoretical Basis,” Quart. J. Roy. Meteorol. Soc., 112 (1986).Google Scholar
  18. 18.
    J. Ettema, M. R. van den Broeke, E. van Meijgaard, and W. J. van de Berg, “Climate of the Greenland Ice Sheet using a High-resolution Climate Model. Part 2: Near Surface Climate and Energy Balance,” The Cryosphere, 4 (2010).Google Scholar
  19. 19.
    R. S. Fausto, A. P. Ahlstrom, D. van As, et al., “A New Present-day Temperature Parameterization for Greenland,” J. Glaciology, 55 (2009).Google Scholar
  20. 20.
    W. L. Gates, “The Numerical Simulation of Ice-age Climate with a Global General Circulation Model,” J. Atmos. Sci., 33 (1976).Google Scholar
  21. 21.
    C. O. Hines, “Doppler Spread Parameterization of Gravity Wave Momentum Deposition in the Middle Atmosphere, Part 2: Broad and Quasimonochromatic Spectra, and Implementation,” J. Atmos. and Solar-Terrestrial Phys., 59 (1997).Google Scholar
  22. 22.
    P. Huybrechts, “Sea-level Changes at the LGM from Ice-dynamic Reconstructions of the Greenland and Antarctic Ice Sheets during the Glacial Cycles,” Quart. Sci. Rev., 21 (2002).Google Scholar
  23. 23.
    T. N. Palmer, G. J. Shutts, and R. Swinbank, “Alleviation of a Systematic Westerly Bias in General Circulation and Numerical Weather Prediction Models through an Orographic Gravity Wave Drag Parameterization,” Quart. J. Roy. Meteorol. Soc., 112 (1986).Google Scholar
  24. 24.
    A. Rob in son, R. Calov, and A. Ganopolski, “An Efficient Regional Energy-moisture Balance Model for Simulation of the Greenland Ice Sheet Response to Climate Change,” The Cryosphere, 4 (2010).Google Scholar
  25. 25.
    K. M. Terekhov, E. M. Volodin, and A. V. Gusev, “Methods and Efficiency Estimation of Parallel Implementation of the a-model of General Ocean Circulation,” Russ. J. Numer. Analysis and Mathematical Modelling, No. 2, 26 (2011).Google Scholar
  26. 26.
    M. van den Broeke, J. Bamber, J. Ettema, et al., “Partitioning Recent Greenland Mass Loss,” Science, 326 (2009).Google Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  • O. O. Rybak
    • 1
    • 2
  • E. M. Volodin
    • 1
  • P. A. Morozova
    • 1
    • 3
  • P. Huybrechts
    • 4
  1. 1.stitute of Numerical MathematicsRussian Academy of SciencesMoscowRussia
  2. 2.Sochi Research CenterRussian Academy of SciencesSochiRussia
  3. 3.Institute of GeographyRussian Academy of SciencesMoscowRussia
  4. 4.Vrije Universiteit BrusselBrusselsBelgium

Personalised recommendations