Skip to main content
Log in

Stochastic Modeling and Estimation of the Probability of Productivity Losses

  • Modeling
  • Published:
Russian Agricultural Sciences Aims and scope

Abstract

Adoption of responsible managerial decisions in the conditions of potentially large or even “catastrophic” economic losses requires, apart from expert evaluation, the obligatory use of objective scientific approaches to the assessment of the possible risks. Such methods allow one to give an objective assessment of the risks in the current or forecasted critical situation. The article proposes a stochastic model for estimation of the productivity losses probability in the crop production in the conditions of various climatic scenarios, including the “bad” and “abnormally bad” seasons. The approach is based on the use of a modified algorithm for estimating the parameters of the finite mixture of distributions to the retrospective information about the productivity of the crop in a given geographic area within the previous years. The adequacy of the model is tested based on the real data. Extensive statistical material is accumulated at Russian agricultural research institutes for implementing the proposed approach in the various soil-climatic zones of the Russian Federation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yakushev, V.P., Bure, V.M., and Brunova, T.M., Statistical methods in agrophysics, in Agrofizika ot A.F. Ioffe do nashikh dnei (Agrophysics from A. F. Ioffe to the Present Day), St. Petersburg: AFI, 2002, pp. 319–330.

    Google Scholar 

  2. Yakushev, V.P. and Yakushev, V.V., Informatsionnoe obespechenie tochnogo zemledeliya (Information Support for Precision Farming), St. Petersburg: Izd. Peterb. Inst. Yad. Fiz. Ross. Akad. Nauk, 2007.

    Google Scholar 

  3. Yakushev, V.P., Karelin, V.V., Bure, V.M., and Parilina, E.M., Soil acidity adaptive control problem, Stochastic Environ. Res. Risk Assess., 2015, vol. 29, no. 6, pp. 1671–1677.

    Article  Google Scholar 

  4. Yakushev, V.P. and Bure, V.M., Methodological approaches to the assessment of the optimal time for carrying out agrotechnological events, Dokl. Ross. S-kh. Akad., 2001, no. 4, pp. 27–30.

    Google Scholar 

  5. Yakushev, V.P. and Bure, V.M., Statistical estimation of the distribution of the optimal time for carrying out agrotechnological events, Dokl. Ross. S-kh. Akad., 2002, no. 3, pp. 11–13.

    Google Scholar 

  6. Yakushev, V.P., Bure, V.M., Yakushev, V.V., and Bure, A.V., Optimal time interval for conducting agrotechnical measures, Russ. Agric. Sci., 2013, vol. 39, nos. 5–6, pp. 533–536.

    Article  Google Scholar 

  7. Vavitsara, M.E., Sabatier, S., Meng Zhen Kang, Hery Lisy Tiana Ranarijaona, and de Reffye, Ph., Yield analysis as a function of stochastic plant architecture: Case of Spilanthes acmella in the wet and dry season, Comput. Electron. Agric., 2017, vol. 138, pp. 105–116.

    Google Scholar 

  8. Pengfei He, Jing Li, and Xin Wang, Wheat harvest schedule model for agricultural machinery cooperatives considering fragmental farmlands, Comput. Electron. Agric., 2018, vol. 145, pp. 226–234.

    Article  Google Scholar 

  9. Reet Poldaru and Juri Roots, Using a nonlinear stochastic model to schedule silage maize harvesting on Estonian farms, Comput. Electron. Agric., 2014, vol. 107, pp. 89–96.

  10. Zhang Shiwen, Zhang Lanlan, Li Zishuang, Wang Qingyun, Cui Hongbiao, Sun Zhongxiang, Ge Chang, Liu Huiling, and Huang Yuanfang, Three-dimensional stochastic simulations of soil clay and its response to sampling density, Comput. Electron. Agric., 2017, vol. 142, pp. 273–282.

    Article  Google Scholar 

  11. Johann, A.L., de Araújo, A.G., Delalibera, H.C., and Hirakawa, A.R., Soil moisture modeling based on stochastic behavior of forces on a no-till chisel opener, Comput. Electron. Agric., 2016, vol. 121, pp. 420–428.

    Article  Google Scholar 

  12. Jun Diao, Philippe De Reffye, Xiangdong Lei, Hong Guo, and Veronique Letort, Simulation of the topological development of young eucalyptus using a stochastic model and sampling measurement strategy, Comput. Electron. Agric., 2012, vol. 80, pp. 105–114.

    Google Scholar 

  13. Harwood, T.D., Al Said, F.A., Pearson, S., Houghtona, S.J., and Hadley, P., Modelling uncertainty in field grown iceberg lettuce production for decision support, Comput. Electron. Agric., 2010, vol. 71, pp. 57–63.

    Google Scholar 

  14. Salmon-Monviola, J., Durand, P., Ferchaud, F., Oehler, F., and Sorel, L., Modelling spatial dynamics of cropping systems to assess agricultural practices at the catchment scale, Comput. Electron. Agric., 2012, vol. 81, pp. 1–13.

    Article  Google Scholar 

  15. Mayer, D.G., Walmsley, B.J., McPhee, M.J., Oddy, V.H., Wilkins, J.F., Kinghorn, B.P., Dobos, R.C., and McKiernan, W.A., Integrating stochasticity into the objective function avoids Monte Carlo computation in the optimisation of beef feedlots, Comput. Electron. Agric., 2013, vol. 91, pp. 30–34.

    Article  Google Scholar 

  16. Silva-Villacorta, D., Lopez-Villalobos, N., Blair, H.T., Hickson, R.E., and Macgibbon, A.K., A stochastic farm model to simulate dairy farms and the segregation of cows to produce milk with different concentrations of unsaturated fatty acids, Comput. Electron. Agric., 2016, vol. 125, pp. 29–38.

    Article  Google Scholar 

  17. Benjamin, D., Bruno, B., Vincent, L., Bernard, B., Jean-Pierre, D., and Marie-France, D., Systematic analysis of site-specific yield distributions resulting from nitrogen management and climatic variability interactions, Precis. Agric., 2015, vol. 16, pp. 361–384.

    Article  Google Scholar 

  18. Grifo, A.R.L. and Marques da Silva, J.R., Stochastic simulation of maize productivity: Spatial and temporal uncertainty in order to manage crop risks, Precis. Agric., 2015, vol. 16, pp. 668–689.

    Article  Google Scholar 

  19. Akış, R., Spatial variability of soil solute and saturated hydraulic conductivity affected by undrained water table conditions, Precis. Agric., 2015, vol. 16, pp. 330–359.

    Article  Google Scholar 

  20. McFadden, B.R., Wade, B.B., and Raun, W.R., Nitrogen fertilizer recommendations based on plant sensing and Bayesian updating, Precis. Agric., 2018, vol. 19, pp. 79–92.

    Article  Google Scholar 

  21. Jones, G., Gée, Ch., and Truchetet, F., Modelling agronomic images for weed detection and comparison of crop/weed discrimination algorithm performance, Precis. Agricult., 2009, vol. 10, pp. 1–15.

    Article  Google Scholar 

  22. Aivazyan, S.A., Bukhshtaber, V.M., Enyukov, I.S., and Meshalkin, L.D., Prikladnaya statistika. Klassifikatsiya i snizhenie razmernosti. (Spravochnoe izdanie) (Applied Statistics. Classification and Reduction of Dimension. (Handbook Edition)), Moscow: Finansy i statistika, 1989.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. P. Yakushev.

Additional information

Original Russian Text © V.P. Yakushev, V.V. Yakushev, V.M. Bure, 2018, published in Rossiiskaya Sel’skokhozyaistvennaya Nauka, 2018, No. 5, pp. 77–80.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yakushev, V.P., Yakushev, V.V. & Bure, V.M. Stochastic Modeling and Estimation of the Probability of Productivity Losses. Russ. Agricult. Sci. 44, 582–585 (2018). https://doi.org/10.3103/S1068367418060198

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068367418060198

Keywords

Navigation