A Method to Account for Thermal Sensitivity and Friction Heat Resistance of Materials in Calculating Disc Brake Temperature Mode

Abstract

This paper presents the system of equations of heat dynamics of friction and wear (HDFW) for the pad–disc tribosystems, accounting for the thermal sensitivity of materials and the dependence of the friction coefficient on the maximum temperature of the friction surface. The contact of two sliding layers with heat generation due to friction is chosen for simulation in the formulation of the corresponding thermal problem of friction. The solution to the HDFW system of equations is obtained using the method of lines. The calculations are performed for a cermet pad and a cast-iron disc. The variation in such interdependent characteristics as temperature, velocity, and friction coefficient is investigated in the braking process.

This is a preview of subscription content, log in to check access.

Fig. 1.
Fig. 2.
Fig. 3.

REFERENCES

  1. 1

    Chichinadze, A.V., Braun, E.D., Ginzburg, A.G., and Ignat’eva, Z.V., Raschet, ispytanie i podbor friktsionnykh par (Calculation, Testing, and Choice of Friction Pairs), Moscow: Nauka, 1979.

  2. 2

    Chichinadze, A.V., Kokonin, S.S., Braun, E.D., and Matveev, A.A., Theoretical and experimental prediction of performance of multiple-disc aircraft brakes, J. Frict. Wear, 1997, vol. 18, no. 2, pp. 22–32.

    Google Scholar 

  3. 3

    Balakin, V. and Sergienko, V., Teplovye raschety tormozov i uzlov treniya (Thermal Calculations of Brakes and Frictional Assemblies), Gomel: Inst. Mekh. Metallopolim. Sist., Nats. Akad. Nauk Bel., 1999.

  4. 4

    Belyakov, N.S. and Nosko, A.P., Neideal’nyi teplovoi kontakt tel pri trenii (Non-ideal Heat Contact of Solids at Friction), Moscow: Librokom, 2010.

  5. 5

    Kuciej, M., Analytical Models of Transient Frictional Heating, Bialystok: Politechniki Bialostockiej, 2012.

    Google Scholar 

  6. 6

    Adamowicz, A., Grzes, P., Jewtuszenko, O., et al., Analytical and Numerical Modeling of Process of Transient Heat Generation in Friction Components of Brake Systems, Jewtuszenko, O., Ed., Bialystok: Politechniki Bialostockiej, 2014.

    Google Scholar 

  7. 7

    Sergienko, V.P., Tseluev, M.Yu., Kolesnikov, V.I., et al., Studying thermal state of friction pairs of multidisc brake, J. Frict. Wear, 2013, vol. 34, no. 6, pp. 421–428.

    Article  Google Scholar 

  8. 8

    Chichinadze, A.V., Albagachiev, A.Yu., Kozhemyakina, V.D., et al., Assessment of friction and wear characteristics of domestic friction composite materials in loaded aircraft brakes, J. Frict. Wear, 2009, vol. 30, no. 4, pp. 261–270.

    Article  Google Scholar 

  9. 9

    Day, A.J., Braking of Road Vehicles, Oxford: Butterworth-Heinemann, 2014.

    Google Scholar 

  10. 10

    Jewtuszenko, O., Kuciej, M., and Och, E., Nonlinear Models of Transient Frictional Heating in Brake Systems, Bialystok: Politechniki Bialostockiej, 2018.

    Google Scholar 

  11. 11

    Grzes, P., Coupled Numerical Models of Heat Generation in Disc Brakes, Bialystok: Politechniki Bialostockiej, 2019.

    Google Scholar 

  12. 12

    Chichinadze, A.V., Kozhemyakina, V.D., and Suvorov, A.V., Method of temperature-field calculation in model ring specimens during bilateral friction in multidisk aircraft brakes with the IM-58-T2 new multipurpose friction machine, J. Frict. Wear, 2010, vol. 31, no. 1, pp. 23–32.

    Article  Google Scholar 

  13. 13

    Ginzburg, A.G., Theoretical and experimental calculations of a single braking process using the system of equations of thermal friction dynamics, in Optimal’noe ispol’zovanie friktsionnykh materialov v uzlakh treniya mashin (Optimal Use of Friction Materials in Friction Units of Machines), Moscow: Nauka, 1973, pp. 93–105.

  14. 14

    Mamkhegov, M.A., Zinov’eva, Z.V., and Ginzburg, A.G., Calculation of the maximum temperature of unsteady friction with intense heat release, in Trenie i iznos (Friction and Wear), Moscow: Nauka, 1977, pp. 46–53.

  15. 15

    Yevtushenko, A., Kuciej, M., and Och, E., Theoretical nonlinear model of frictional heat generation in braking, Heat Trans. Res., 2019, vol. 50, no. 10, pp. 1007–1022.

    Article  Google Scholar 

  16. 16

    Gear, C.W., Algorithm 407: DIFSUB for solution of ordinary differential equations, Commun. ACM, 1971, vol. 14, no. 3, pp. 185–190.

    Article  Google Scholar 

  17. 17

    Chichinadze, A.V., Matveevskii, R.M., and Braun, E.D., Materialy v tribotekhnike nestatsionarnykh protsessov (Materials in Tribology of Non-Stationary Processes), Moscow: Nauka, 1986.

  18. 18

    Chichinadze, A.V., Okulov, B.S., Suvorov, A.V., et al., Optimal testing of heavy-loaded brakes of transport vehicles, Tyazh. Mashinostr., 2001, no. 4, pp. 6–11.

Download references

Funding

The work is supported by the National Science Center of the Republic of Poland (project no. 2017/27/B/ST8/01249).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to A. Yevtushenko or M. Kuciej.

Additional information

Translated by E. Oborin

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yevtushenko, A., Kuciej, M. A Method to Account for Thermal Sensitivity and Friction Heat Resistance of Materials in Calculating Disc Brake Temperature Mode. J. Frict. Wear 41, 221–227 (2020). https://doi.org/10.3103/S1068366620030058

Download citation

Keywords:

  • braking
  • friction
  • friction heat generation
  • temperature
  • pad
  • disc