Advertisement

Coke and Chemistry

, Volume 60, Issue 3, pp 113–118 | Cite as

Intensification of heat transfer in the heating ducts of coke batteries

Equipment And Power Systems
  • 27 Downloads

Abstract

On the basis of a model of the gas flow in the heating duct, artificial turbulization is proposed as a means of intensifying the heat transfer in coke batteries. When using a brick lining of special form, the heat transfer in the heating duct is intensified as a result of the destruction of the laminar wall layer, with slight increase in the hydraulic drag. That improves the energy efficiency of the system.

Keywords

heating system coke oven heating duct brick lining turbulization intensification modeling fluid dynamics heat transfer 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kalinin, E.K., Dreitser, G.A., and Yarkho, S.A., Intensifikatsiya teploobmena v kanalakh (Intensification of Heat Transfer in the Channels), Moscow: Mashinostroenie, 1990.Google Scholar
  2. 2.
    Dreitser, G.A., Creation of compact tubular heat exchangers, Teploenergetika, 1995, no. 3, pp. 11–18.Google Scholar
  3. 3.
    Dreitser, G.A. and Lobanov, I.E., Investigation of the limiting enhancement of heat transfer in tubes due to the artificial turbulization of flow, High Temp., 2002, vol. 40, no. 6, pp. 892–897.CrossRefGoogle Scholar
  4. 4.
    Antuf’ev, V.M., Effektivnost’ razlichnykh form konvektivnykh poverkhnostei nagreva (Efficiency of Various Forms of Convective Surfaces of Heating), Moscow: Energiya, 1966.Google Scholar
  5. 5.
    Bergles, A.E., Techniques to enhance heat transfer, in Handbook of Heat Transfer, Rohsenow, W.M., Hartnett, J.P., and Cho, Y.I., Eds., New York: McGraw-Hill, 1998, chap. 11, 3rd ed.Google Scholar
  6. 6.
    Voronin, G.I. and Dubrovskii, E.V., Effektivnye teploobmenniki (Efficient Heat Exchangers), Moscow: Mashinostroenie, 1973.Google Scholar
  7. 7.
    Gukhman, A.A., Kirpikov, V.A., and Borisova, R.D., Comparative evaluation of the efficiency of some modern methods for intensification of convective heat exchange, Mater. VII Vses. konferentsii (Proc. VII All-Union Conf.), Minsk: Inst. Mass. Teploobmmena, 1984, vol. 1, pp. 56–61.Google Scholar
  8. 8.
    Migai, V.K., Povyshenie effektivnosti sovremennykh teploobmennikov (Efficiency Improvement of Modern Heat Exchangers), Leningrad: Energiya, 1980.Google Scholar
  9. 9.
    Migai, V.K., Modelirovanie teploobmennogo energeticheskogo oborudovaniya (Modeling of Heat Exchange Equipment), Leningrad: Energoatomizdat, 1987.Google Scholar
  10. 10.
    Migai, V.K., The maximum intensification of heat exchange in pipes by flow turbulization, Izv. Akad. Nauk SSSR, Energ. Transp., 1990, no. 2, pp. 169–172.Google Scholar
  11. 11.
    Shchukin, V.K., Teploobmen i gidrodinamika vnutrennikh potokov v polyakh massovykh sil (Heat Exchange and Hydrodynamics of Internal Flows in the Fields of Mass Forces), Moscow: Mashinostroenie, 1970.Google Scholar
  12. 12.
    Zhukauskas, A.A., Konvektivnyi perenos v teploobmennikakh (Convective Transfer in Heat Exchangers), Moscow: Nauka, 1982.Google Scholar
  13. 13.
    Lobanov, I.E., Modeling of heat transfer and resistance in turbulent flow in coolant channels with variable physical properties under heat exchange intensification, Trudy Tret’ei Rossiskoi natsional’noi konferentsii po teploobmenu (Proc. Third Russ. National Conf. on Heat Exchange), Moscow: Mosk. Energ. Inst., 2002, vol. 6, pp. 144–147.Google Scholar
  14. 14.
    Dreitser, G.A. and Lobanov, I.E., Limiting intensification of heat exchange in tubes due to artificial turbulization of the flow, J. Eng. Phys. Thermophys., 2003, vol. 76, no. 1, pp. 54–60.CrossRefGoogle Scholar
  15. 15.
    Pavlov, K.F., Romankov, P.G., and Noskov, A.A., Primery i zadachi po kursu protsessov i appratov khimicheskoi tekhnologii: uchebnoe posobie dlya vuzov (Examples and Exercises on the Processes and Devices for Chemical Technologies: Manual for Higher Education Institutions), Leningrad: Khimiya, 1987, 10th ed.Google Scholar
  16. 16.
    Spravochnik koksokhimika. Tom 5. Avtomatika, paroteplosnabzhenie, remontnaya sluzhba (Handbook of Coke Chemist, Vol. 5: Automation, Steam-Heat Supply, and Reparation Service), Moscow: Metallurgiya, 1966.Google Scholar

Copyright information

© Allerton Press, Inc. 2017

Authors and Affiliations

  1. 1.Mendeleev Russian Chemical-Engineering UniversityMoscowRussia

Personalised recommendations