Advertisement

Coke and Chemistry

, Volume 60, Issue 1, pp 7–16 | Cite as

Characteristics of Mongolian coal

  • I. I. Masgutov
  • V. M. Strakhov
  • I. V. Surovtseva
Coal
  • 22 Downloads

Abstract

Samples of Mongolian coal from the Khuden field are studied (specifically, technical and elementary analysis, heat of combustion, mineral characteristics, petrographic composition, clinkering properties, degree of oxidation, mechanical strength, and thermal stability). The Mongolian coal samples are classified in terms of genetic and technological parameters, and prospects for the use of such coal are assessed.

Keywords

Mongolian coal technical analysis petrography clinkering properties mechanical strength thermal stability ash composition physicochemical properties 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Batbileg, S., Davaajav, Y., Purevsuren, B., Namkhainorov, D., Kuznetsov, P.N., and Kolesnikova, S.M., Composition and reactivity of coal from the Khoot deposit in Mongolia, Solid Fuel Chem., 2014, vol. 48, no. 3, pp. 149–155.CrossRefGoogle Scholar
  2. 2.
    Strakhov, V.M. and Masgutov, I.I., Coal of Mongolia and industrial infrastructure, Koks Khim., 2012, no. 4, pp. 46–51.Google Scholar
  3. 3.
    Mizin, V.G. and Serov, G.V., Uglerodistye vosstanoviteli dlya ferrosplavov (Carbon Reducing Agents for Ferroalloys), Moscow: Metallurgiya, 1976.Google Scholar
  4. 4.
    Strakhov, V.M., Surovtseva, I.V., Elkin, D.K., Elkin, K.S., and Cherevko, A.E., Low-ash carbon reducing agents for electrothermal silicon production, Coke Chem., 2012, vol. 55, no. 5, pp. 172–175.CrossRefGoogle Scholar
  5. 5.
    Strakhov, V.M. and Elkin, K.S., Modern requirements to the carbon reducing agents for the production of high-purity industrial silicon, IXMezhdunar. nauchnoprakt. konf. “Metallurgiya: tekhnologii, innovatsii, kachestvo” (IX Int. Sci.-Pract. Conf. “Metallurgy: Technologies, Innovations, and Quality”), Novokuznetsk, 2015, part 1, pp. 80–83.Google Scholar
  6. 6.
    Strakhov, V.M., Kaliakparov, A.G., and Kashlev, I.M., The role of coal and the efficiency of its use instead of coke in electrothermal smelting of ferrosilicon, Chern. Metall., 2012, no. 11, pp. 67–75.Google Scholar
  7. 7.
    Strakhov, V.M., Matvienko, V.A., Timofeev, G.D., et al., Analysis of lignite from Maikyubinsk basin as the carbon reducing agents in smelting of ferroalloys, Koks Khim., 1998, no. 9, pp. 17–21.Google Scholar
  8. 8.
    Strakhov, V.M., Svyatov, B.A., Golovachev, N.P., et al., Coke production technologies from the coal of Shubarkol field: quality evaluation for use as the carbon reducing agent for smelting of ferroalloys, Koks Khim., 2004, no. 10, pp. 16–20.Google Scholar
  9. 9.
    Strakhov, V.M., Surovtseva, I.V., D’yachenko, A.V., and Men’shenin, V.M., Semicoke production and quality at Chinese vertical SJ furnaces, Coke Chem., 2007, vol. 50, no. 5, pp. 124–130.CrossRefGoogle Scholar
  10. 10.
    Strakhov, V.M., Can coke be produced from nonclinkering coal? Coke Chem., 2013, vol. 56, no. 9, pp. 332–336.CrossRefGoogle Scholar
  11. 11.
    Edil’baev, I.B., Golovachev, N.P., Privalov, O.E., et al., The complex technology of thermooxidizing coking of coal at Aksuskii Ferroalloy Plant, Gorn. Zh. Kazakh., 2008, no. 2, pp. 12–17.Google Scholar
  12. 12.
    Strakhov, V.M., Kaliakparov, A.G., Kariev, A.D., Zhumagulov, M.G., and Nikiforov, A.S., Industrial investigation of thermooxidative coking on interlinked gratings, Coke Chem., 2008, vol. 51, no. 5, pp. 178–183.CrossRefGoogle Scholar
  13. 13.
    Loginov, D.A. and Islamov, S.R., Fluidized-bed carbonization of lignite, Coke Chem., 2010, vol. 53, no. 5, pp. 179–182.CrossRefGoogle Scholar
  14. 14.
    Dinel’t, V.M., Strakhov, V.M., Livenets, V.I., and Anikin, A.E., Production of high-quality agglomerated fuel of lignite semicoke from coal of Kansk-Achinsk field, Mater. Prevogo mazhdunar. naychno-tekhnol. kongr. “Energetika v global’nom mire,” Tezisy dokladov (Proc. First Int. Sci.-Technol. Congr. “Global Energetics,” Abstracts of Papers), Krasnoyarsk, 2010, pp. 381, 382.Google Scholar
  15. 15.
    Oyunbold, D., Syroezhko, A.M., Slavoshevskaya, N.V., and Strakhov, V.M., Modification of bed-coking batch with tar derived from Mongolian and Russian lignite, Coke Chem., 2010, vol. 53, no. 2, pp. 45–50.CrossRefGoogle Scholar
  16. 16.
    Oyunbold, D., Syroezhko, A.M., Slavoshevskaya, N.V., and Strakhov, V.M., Processing Mongolian and Russian lignite to obtain humin preparations, low-ash carbon- based reducing agents, and coal briquettes, Coke Chem., 2010, vol. 53, no. 3, pp. 98–104.Google Scholar
  17. 17.
    Oyunbold, D., Syroezhko, A.M., Slavoshevskaya, N.V., and Strakhov, V.M., Ozonization of Mongolian and Russian lignite and the derived humic acids, Coke Chem., 2010, vol. 53, no. 4, pp. 146–153.CrossRefGoogle Scholar
  18. 18.
    Semenova, S.A., Fedorova, N.I., Zaostrovskii, A.N., and Ismagilov, Z.R., Modification of Mongolian coals using a low-temperature oxygen plasma, Solid Fuel Chem., 2013, vol. 47, no. 2, pp. 83–87.CrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2017

Authors and Affiliations

  • I. I. Masgutov
    • 1
  • V. M. Strakhov
    • 2
  • I. V. Surovtseva
    • 2
  1. 1.Eurasian National-Resource Corporation (ENRC) Mongolia LLCUlan-BatorMongolia
  2. 2.Kuznetsk CenterAO Vostochnyi Nauchno-Issledovatel’skii Uglekhimicheskii Institut (VUKhIN)NovosibirskRussia

Personalised recommendations