Skip to main content
Log in

Nonlinear Optical Properties of Cylindrical Quantum Dot with Kratzer Confining Potential

  • Published:
Journal of Contemporary Physics (Armenian Academy of Sciences) Aims and scope

Abstract

Electronic states are considered in a cylindrical quantum dot with the Kratzer confining potential in the axial direction. In this system, the nonlinear optical rectification and second harmonic generation for intraband transitions are studied theoretically. Analytical expressions are calculated for the energy spectrum of the wave functions, as well as for the matrix elements. The dependences of the coefficients of the optical rectification and the second harmonic on the incident photon energy are obtained. The nonmonotonic behavior of the dependences of the peaks heights of the optical rectification coefficients depending on the half width and depth of the Kratzer confining potential in the axial direction is demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bimberg, D., Grundmann, M., and Ledentsov, N.N., Quantum dot heterostructures, John Wiley & Sons, 1999.

    Google Scholar 

  2. Kazaryan, E.M. and Petrosyan, S.G., Physical principles of semiconductor nanoelectronics, Yerevan: RAU, 2005.

    Google Scholar 

  3. Warburton, R.J., Schulhauser, C., Haft, D., Schäflein, C., Karrai, K., Garcia, J.M., Schoenfeld, W., and Petroff, P.M., Physical Review B, 2002, vol. 65, p. 113303.

    Article  ADS  Google Scholar 

  4. Cao, G., Nanostructures and nanomaterials: synthesis, properties and applications, Imperial college press, 2004.

    Book  Google Scholar 

  5. Caruge, J.M., Halpert, J.E., Wood, V., Bulović, V., and Bawendi, M.G., Nature photonics, 2008, vol. 2, p. 247.

    Article  Google Scholar 

  6. Hayrapetyan, D.B., Kazaryan, E.M., and Sarkisyan, H.A., Optics Communications, 2016, vol. 371, p. 138.

    Article  ADS  Google Scholar 

  7. Zhu, J.L., Xiong, J.J., and Gu, B.L., Physical Review B, 1990, vol. 41, p. 6001.

    Article  ADS  Google Scholar 

  8. Cantele, G., Piacente, G., Ninno, D., and Iadonisi, G., Physical Review B, 2002, vol. 66, p. 113308.

    Article  ADS  Google Scholar 

  9. Hayrapetyan, D.B., J. Contemp. Phys. (Armenian Ac. Sci.), 2007, vol. 42, p. 292.

    Article  ADS  Google Scholar 

  10. Vahdani, M.R.K. and Rezaei, G., Physics Letters A, 2010, vol. 374, p. 637.

    Article  ADS  Google Scholar 

  11. Atoyan, M.S., Kazaryan, E.M., and Sarkisyan, H.A., Physica E: Low–dimensional Systems and Nanostructures, 2004, vol. 22, p. 860.

    Article  ADS  Google Scholar 

  12. Atoyan, M.S., Kazaryan, E.M., and Sarkisyan, H.A., Physica E: Low–dimensional Systems and Nanostructures, 2006, vol. 31, p. 83.

    Article  ADS  Google Scholar 

  13. Woggon, U, Optical properties of semiconductor quantum dots, Springer, 1997.

    Google Scholar 

  14. Schmitt–Rink, S.D.A.B.M., Miller, D.A.B., and Chemla, D.S., Physical Review B, 1987, vol. 35, p. 8113.

    Article  ADS  Google Scholar 

  15. Takagahara, T., Physical Review B, 1987, vol. 36 p. 9293.

  16. Li, B., Guo, K.X., Zhang, C.J., and Zheng, Y.B., Physics Letters A, 2007, vol. 367, p. 493.

    Article  ADS  Google Scholar 

  17. Shao, S., Guo, K.X., Zhang, Z.H., Li, N., and Peng, C., Superlattices and Microstructures, 2010, vol. 48, p. 541.

    Article  ADS  Google Scholar 

  18. Liu, G., et al., Superlattices and Microstructures, 2013, vol. 53, p. 173.

    Article  ADS  Google Scholar 

  19. Portacio, A.A., Rodríguez, B.A., and Villamil, P., Superlattices and Microstructures, 2018, vol. 113, p. 550.

    Article  ADS  Google Scholar 

  20. Xie, W., Physics Letters A, 2008, vol. 372, p. 5498.

    Article  ADS  Google Scholar 

  21. Bera, A., Ghosh, A., and Ghosh, M., Optical Materials, 2017, vol. 69, p. 352.

    Article  ADS  Google Scholar 

  22. Malik, S., Roberts, C., Murray, R., and Pate, M., Applied Physics Letters, 1997, vol. 71, p. 1987.

    Article  ADS  Google Scholar 

  23. Garcıa, J.M., Medeiros–Ribeiro, G., Schmidt, K., Ngo, T., Feng, J.L., Lorke, A., and Petroff, P.M., Applied Physics Letters, 1997, vol. 71, p. 2014.

    Article  ADS  Google Scholar 

  24. Barker, J.A. and O'Reilly, E.P., Physica E: Low–dimensional Systems and Nanostructures, 1999, vol. 4, p. 231.

    Article  ADS  Google Scholar 

  25. Lu, L., Xie, W., and Hassanabadi, H., Journal of Luminescence, 2011, vol. 131, p. 2538.

    Article  ADS  Google Scholar 

  26. Hayrapetyan, D.B., et al., Nanotechnology VII. International Society for Optics and Photonics, 2015, vol. 9519, p. 951919.

    Google Scholar 

  27. Onyeaju, M.C., et al., Few–Body Systems, 2016, vol. 57, p. 793.

    ADS  Google Scholar 

  28. Jasmine, P.C., Peter, A.J., and Lee, C.W., Chemical Physics, 2015, vol. 452, p. 40.

    Article  ADS  Google Scholar 

  29. Hayrapetyan, D.B., Kazaryan, E.M., and Tevosyan, H.K., J. Contemp. Phys. (Armenian Ac. Sci.), 2014, vol. 49, p. 119.

    Article  ADS  Google Scholar 

  30. Flügge, S., Practical quantum mechanics, Springer Science & Business Media, 2012.

    MATH  Google Scholar 

  31. Hayrapetyan, D.B., Amirkhanyan, S.M., Kazaryan, E.M., and Sarkisyan, H.A., Physica E: Low–dimensional Systems and Nanostructures, 2016, vol. 84, p. 367.

    Article  ADS  Google Scholar 

  32. Hayrapetyan, D.B., Kazaryan, E.M., Petrosyan, L.S., and Sarkisyan, H.A., Physica E: Low–dimensional Systems and Nanostructures, 2015, vol. 66, p. 7.

    Article  ADS  Google Scholar 

  33. Rosencher, E. and Bois, Ph., Physical Review B, 1991, vol. 44, p. 11315.

    Article  ADS  Google Scholar 

  34. Xie, W., Journal of Luminescence, 2013, vol. 143, p. 27.

    Article  ADS  Google Scholar 

  35. Baskoutas, S., Paspalakis, E., and Terzis, A.F., Physical Review B, 2006, vol. 74, p. 153306.

    Article  ADS  Google Scholar 

  36. Ahn, D. and Chuang, S.L., IEEE Journal of Quantum Electronics, 1987, vol. 23, p. 2196.

    Article  ADS  Google Scholar 

  37. Landau, L.D. and Lifshitz, E.M., Quantum Mechanics: Non–Relativistic Theory, vol. 3, 3rd ed., Pergamon Press, 1977.

    MATH  Google Scholar 

  38. Baskoutas, S., Paspalakis, E., and Terzis, A.F., Journal of Physics: Condensed Matter, 2007, vol. 19, p. 395024.

    Google Scholar 

  39. Kole, A.K., et al., Optics Communications, 2014, vol. 313, p. 231.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Baghdasaryan.

Additional information

Russian Text © D.A. Baghdasaryan, E.S. Hakobyan, D.B. Hayrapetyan, H.A. Sarkisyan, E.M. Kazaryan, 2019, published in Izvestiya Natsional'noi Akademii Nauk Armenii, Fizika, 2019, Vol. 54, No. 1, pp. 61–74.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baghdasaryan, D.A., Hakobyan, E.S., Hayrapetyan, D.B. et al. Nonlinear Optical Properties of Cylindrical Quantum Dot with Kratzer Confining Potential. J. Contemp. Phys. 54, 46–56 (2019). https://doi.org/10.3103/S1068337219010067

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068337219010067

Keywords

Navigation