Skip to main content
Log in

Interband Absorption and Photoluminescence in Nanospherical InP/InAs/InP Core/Shell/Shell Heterostructure

  • Published:
Journal of Contemporary Physics (Armenian Academy of Sciences) Aims and scope

Abstract

The single-particle states of charge carriers in the nanospherical InP/InAs/InP heterostructure are theoretically considered in the isotropic effective mass approximation and in the regime of strong size quantization. The results of numerical computations of the energy levels of charge carriers at various thicknesses of the quantizing of the InAs layer of the indicated heterophase structure are presented. It is shown that it is possible to achieve the desired value and position of the size quantization levels of charge carriers in the layer by an appropriate choice of the layer thickness. The interband optical transitions in the InAs layer are also considered. The values of the effective broadening of the band gap of the InAs layer as a function of the layer thickness are computed. By numerical computations, it is shown that the absorption has a resonant character and that the diagonal transitions dominate in the spectrum of the interband absorption. For several diagonal transitions involving both light and heavy holes, the values of threshold frequencies and absorption curves are given. In the spherical InP/InAs/InP nanoheterostructure, the photoluminescence spectra were also constructed for various temperatures close to room temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aghekyan, N.G., Kazaryan, E.M., Kostanyan, A.A., and Sarkisyan, H.A., Superlattices and Microstructures, 2011, vol. 50, p. 199.

    Article  ADS  Google Scholar 

  2. Ferron, A., Serra, P., and Osenda, O., Phys. Rev. B, 2012, vol. 85, p. 165322.

    Article  ADS  Google Scholar 

  3. Harutyunyan, V.A., Hayrapetyan, D.B., and Baghdasaryan, D.A., J. Contemp. Phys. (Armenian Ac. Sci.), 2016, vol. 51, p. 350.

    Article  ADS  Google Scholar 

  4. Harutyunyan, V.A., Hayrapetyan, D.B., and Kazaryan, E.M., J. Contemp. Phys. (Armenian Ac. Sci.), 2018, vol. 53, p. 48.

    Article  ADS  Google Scholar 

  5. Harutryunyan, V., Effect of Static Electric Fields on the Electronic and Optical Properties of Layered Semiconductor Nanostructures, PART I Effect of Static Electric Fields on the Electronic Properties of Layered Semiconductor Nanostructures, Bentham Science, 2015.

    Book  Google Scholar 

  6. Henini, M., Handbook of Self Assembled Semiconductor Nanostructures for Novel Devices in Photonics and Electronics, Elsevier, 2011.

    Google Scholar 

  7. El–Toni, A.M., Habila, M.A., Labis, J.P., Othman, Z.A., Alhoshan, M., Elzatahry, A.A., and Zhang, F., Nanoscale, 2016, vol. 8, p. 2510.

    Article  ADS  Google Scholar 

  8. Berezowsky, J., Gywat, O., Meier, F., Battaglia, D., Peng, X., and Awschalom, D.D., Nature Physics, 2006, vol. 2, p. 831.

    Article  ADS  Google Scholar 

  9. Cat, D.T., Pucci, A., and Wandlet, K., Physics and Engineering of New Materials, Berlin–Heidelberg: Springer, 2009.

    Book  Google Scholar 

  10. Brovelli, S., Schaller, R.D., Crooker, S.A., Garcia–Santamaria, F., Chen, Y., Vishvanatha, R., Hollingsworth, J.A., Htoon, H., and Klimov, V.I., Nature Commun., 2011, vol. 2, Article Number 280.

  11. Smith, A.M., Lane, L.A., and Nie, S., Nature Commun., 2014, vol. 5, Article number 4506.

  12. K. Li, Nanotechnology, vol. 1, p. 482 (2014).

    Google Scholar 

  13. Kumar, C.S.S.R., (Ed.), Semiconductor nanomaterials. John Wiley & Sons; pp. 393–427 (2010).

    Google Scholar 

  14. Micro Systems and Devices for (Bio)chemical Processes, Jr: Chemical engineering, vol.38, San Diego: Academic Press, 2010.

  15. Rai, M., and Duran, N., (Eds.), Metal Nanoparticles in Microbiology, Heidelberg–Dordrecht–London–New York: Springer Science & Business Media, 2011.

    Book  Google Scholar 

  16. Waiskopf, N., Rotem, R., Shweky, I., Yedidya, L., Soreq, H., and Banin, U., BioNanoScience, 2013, vol. 3, p. 1.

    Article  Google Scholar 

  17. Ogli, S. and Rostani, A., IET Nanobiotechnology, 2013, vol. 7, p. 140.

    Article  Google Scholar 

  18. Li, J., Wang, D., and LaPierre, R.R., Advances in III–V Semiconductor Nanowires and Nanodevices, Bentham Science (2011).

    Google Scholar 

  19. Mokkapati, S. and Jagadish, Ch., Materials today, 2009, vol. 12, p. 22.

    Article  Google Scholar 

  20. Fang, M., Han, N., Wang, F., Yang, Z–X., Yip, S.P., Dong, G., Hou, J.J., Chueh, Y., and Ho, J.C., Journal of Nanomaterials, 2014, vol. 2014, Article ID 702859.

  21. PATENT WO 2007020416 A1, 22 Feb., 2007.

  22. PATENT CA 2617972 C, 15 July, 2014.

  23. Bachman, K.J., Annual Review of Materials Science, 1981, vol. 11, p. 441.

    Article  ADS  Google Scholar 

  24. Gyuro, I., III–Vs Review, 1996, vol. 9, p. 30.

    Google Scholar 

  25. Ippen, Ch., Greco, T., and Wedel, A., Journ. Inf. Displ., 2012, vol. 13, p. 91.

    Article  Google Scholar 

  26. Froberg, L., Growth, Physics, and Device Applications of InAs–based Nanowires, Sweden: Lund university, 2008.

    Google Scholar 

  27. Contreras–Guerrero, R., Wang, S., Edirisooriya, M., Priyantha, W., Rojas–Ramirez, J.S., Bhuwalka, K., Doornbos, G., Holland, M., Oxland, R., Vellianitis, G., van Dal, M., Duriez, B., Passlack, M., Diaz, C.H., and Droopad, R., Journ. of Crystal Growth, 2013, vol. 378, p. 117.

    Article  ADS  Google Scholar 

  28. Xu, K., Qi, Y., Gao, Z., Li, J., Wang, X., Zhang, Y., Han, Z., and Gao, E., Integrated Ferroelectrics, 2015, vol. 167, p. 205.

    Article  Google Scholar 

  29. Klimov, V.I., Semiconductor and Metal Nanocrystals: Synthesis and Electronic and Optical Properties, CRC Press, 2003, 500p.

    Book  Google Scholar 

  30. Mohan, P., Motohisa, J., and Fukui, T., Appl. Phys. Lett., 2006, vol. 88, p. 013110.

    Article  ADS  Google Scholar 

  31. Mohan, P., Motohisa, J., and Fukui, T., Appl. Phys. Lett., 2006, vol. 88, p. 133105.

    Article  ADS  Google Scholar 

  32. Helmi, M., Alouane, N., Chauvin, N., and Chevallier, C., Nanotechnology, 2011, vol. 22, p. 405702.

    Article  Google Scholar 

  33. dos Santos, C.L. and Piquini, P., Journ. Appl. Phys., 2012, vol. 111, p. 054315.

    Article  ADS  Google Scholar 

  34. http://www.ioffe.ru/SVA/NSM/Semicond/InP/basic.html

  35. http://www.ioffe.ru/SVA/NSM/Semicond/InP/bandstr.html

  36. Buhro, W.E. and Colvin, V.L., Nature Materials, 2003, vol. 2, p. 138.

    Article  ADS  Google Scholar 

  37. Wang, Y., Yang, X., He, T.C., Gao, Y., Demir, H.V., Sun, X.W., and Sun, H.D., Appl. Phys. Lett., 2013, vol. 102, p. 021917.

    Article  ADS  Google Scholar 

  38. http://www.ioffe.ru/SVA/NSM/Semicond/InAs/basic.html

  39. http://www.ioffe.ru/SVA/NSM/Semicond/InAs/bandstr.html

  40. Sun, M.H., Leong, E.S.P., Chin, A.H., Ning, C.Z., Cirlin, G.E., Samsonenko, Yu.B., Dubrovskii, V.G., Chuang, L., and Chang–Hasnain, C., Nanotechnology, 2010, vol. 21, p. 335705.

    Article  Google Scholar 

  41. Abramowitz M. and Stegun, I.A. (Eds.) Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, National Bureau of Standards Applied Mathematics Series, Vol. 4, National Bureau of Standards, 1964.

    MATH  Google Scholar 

  42. Neverov, V.N. and Titov, A.N., Physics of Low–Temperature systems (Fizika Nazkorazmernykh system), Ekaterinburg: Ural. GU, 2008.

    Google Scholar 

  43. Vorobev L.E., Ivchenko, E.L., Firsov, D.A., and Shalygin, V.A., Optical properties of nanostructures. Saint Petersburg: Nauka, 2001.

    Google Scholar 

  44. Kazaryan, E.M., Kostanyan, A.A., and Sarkisyan, H.A., J. Contemp. Phys. (Armenian Ac. Sci.), 2007, vol. 42, p. 145.

    Article  ADS  Google Scholar 

  45. Basu, P.K., Theory of Optical Processes in Semiconductors, Oxford: Clarendon Press, 1997.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. B. Hayrapetyan.

Additional information

Russian Text © V.A. Harutyunyan, M.A. Mkrtchyan, E.M. Kazaryan, D.B. Hayrapetyan, 2019, published in Izvestiya Natsional'noi Akademii Nauk Armenii, Fizika, 2019, Vol. 54, No. 1, pp. 44–60.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Harutyunyan, V.A., Mkrtchyan, M.A., Kazaryan, E.M. et al. Interband Absorption and Photoluminescence in Nanospherical InP/InAs/InP Core/Shell/Shell Heterostructure. J. Contemp. Phys. 54, 33–45 (2019). https://doi.org/10.3103/S1068337219010055

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068337219010055

Keywords

Navigation