Bulletin of the Lebedev Physics Institute

, Volume 45, Issue 7, pp 223–225 | Cite as

Morphology of Tungsten Nanooxides, Synthesized by Laser Ablation of Metal in Water

  • V. T. Karpukhin
  • M. M. Malikov
  • T. I. Borodina
  • G. E. Val’yano
  • M. A. KazaryanEmail author


Colloidal solution precipitates obtained during laser ablation of tungsten in water and containing nanostructured metal oxides are studied using X-ray diffraction and scanning electron microscopy. The nanostructure composition and morphology are analyzed. It is shown that the material composing nanostructures is X-ray amorphous, i.e., the particle size does not exceed 1–2 nm. The high degree of the structure surface development implies prospects of their use as substrata when analyzing the composition of various materials by surface-enhanced Raman scattering.


laser ablation nanostructures nanofoam tungsten optical properties and morphology of nanostructures 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. Aroca, Surface Enhanced Vibrational Spectroscopy (Wiley, Chichester, 2006).CrossRefGoogle Scholar
  2. 2.
    Y. S. Yamamoto and T. Itoh, J. Raman Spectrosc. 47, 78 (2016).ADSCrossRefGoogle Scholar
  3. 3.
    J. R. Lombardi and R. L. Birke, J. Phys.Chem. C 118, 11120 (2014).CrossRefGoogle Scholar
  4. 4.
    W. J. Zhao and Y. Ozaki, J. Raman Spectrosc. 47, 51 (2016).ADSCrossRefGoogle Scholar
  5. 5.
    Y. Wang, W. Ruan, J. Zhang, et al., J. Raman Spectrosc. 40, 1072 (2016).ADSCrossRefGoogle Scholar
  6. 6.
    X. Fu, F. Bei, X. Wang, et al., Mater. Lett. 63, 185 (2009).CrossRefGoogle Scholar
  7. 7.
    B. Mondal and S. K. Saha, Chem. Phys. Lett. 497, 89 (2010).ADSCrossRefGoogle Scholar
  8. 8.
    W. Q. Li, G. Wang, et al., Nanoscale 7, 15487 (2015).ADSCrossRefGoogle Scholar
  9. 9.
    Yu-Luen Deng and Yi-Je Juang, Biosens. Bioelectron. 53, 37 (2014).CrossRefGoogle Scholar
  10. 10.
    V. T. Karpukhin, I. I. Klimovskii, V. M. Batenin, et al., Lasers on Self-Terminating Transitions in Metal Atoms, Vol. 2 (Fizmatlit, Moscow, 2011) [in Russian].Google Scholar
  11. 11.
    V. T. Karpukhin, M. M. Malikov, T. I. Borodina, et al., in Chemical and StructureModification of Polymers, Ed. by K. Pyrzynski, G. Nyszko, and G. E, Zaikov (Apple Academic Press, Oakville, 2015), p.187.Google Scholar
  12. 12.
    A. Yu. Varaksin, M. E. Romash, and V. N. Kopeitsev, High Temp. 47, 836 (2009).CrossRefGoogle Scholar
  13. 13.
    A. Yu. Varaksin, M. E. Romash, V. N. Kopeitsev, and M. A. Gorbachev, High Temp. 48, 918 (2010).CrossRefGoogle Scholar
  14. 14.
    P. Minutolo, G. Rusciano, L. A. Sro, et al., Proc. Combust. Inst. 33, 649 (2011).CrossRefGoogle Scholar
  15. 15.
    D. A. Mamichev, I. E, Kuznetsov, N. E. Maslova, and M. L. Zanaveskin, Molecular medicine, No. 6, 3 (2012).Google Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  • V. T. Karpukhin
    • 1
  • M. M. Malikov
    • 1
  • T. I. Borodina
    • 1
  • G. E. Val’yano
    • 1
  • M. A. Kazaryan
    • 2
    Email author
  1. 1.Joint Institute for High TemperaturesRussian Academy of SciencesMoscowRussia
  2. 2.Lebedev Physical InstituteRussian Academy of SciencesMoscowRussia

Personalised recommendations