Skip to main content
Log in

Correlation of Aerosol Scattering Lidar and Laser Strainmeter Signals during Earth’s Crust Deformations

  • Published:
Bulletin of the Lebedev Physics Institute Aims and scope Submit manuscript

Abstract

Lidar sensing of tectonic aerosol fluctuations in the laser strainmeter–interferometer tunnel during 2017.12–2018.05 at the Schultz cape (131°9′8″ E, 42°34′6″ N) near Vladivostok was performed for the first time to our knowledge. A negative correlation of laser interferometer and aerosol lidar signals was observed during low-frequency Earth crust deformations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. A. Alekseev, A. N. Lyash, and S. M. Pershin, in Modern Problems of Remote Sensing of the Earth from Space, 1(1), 356 (2004); https://doi.org/www.iki.rssi.ru/earth/trudi/v-06.pdf

    Google Scholar 

  2. S. M. Pershin, V. A. Alekseev, N. G. Alekseeva, and A. D. Zhigalin, Phys.Wave Phenom. 16, 159 (2008).

    Article  ADS  Google Scholar 

  3. G. I. Dolgikh, Seismicheskie Pribory 39, 13 (2003).

    Google Scholar 

  4. M. E. Gertsenshtein and V. I. Pustovoit, Zh. Eksp. Teor. Fiz. 43, 605 (1962) [Sov. Phys. JETP 16, 433 (1963)].

    Google Scholar 

  5. B. P. Abbott, R. Abbott, T. D. Abbott, et al., Phys. Rev. Lett. 116, 061102 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  6. S. M. Pershin, V. M. Linkin, V. S. Makarov, et al., “Spaceborne Laser Altimeter Based on the SPAD Receiver and Semiconductor Laser Transmitter,” in Conference on Lasers and Electro-Optics, OSA Technical Digest, Vol. 10, paper CFI1, 1991, Ed. by J. Bufton, A. Glass, T. Hsu, and W. Krupke (Optical Society of America, 1991); hhps://www.osapublishing.org/abstract.cfm?URI=CLEO-1991-CF1I1

    Google Scholar 

  7. S. M. Pershin, “New Generation of the Portable Backscatter Lidar with Eyesafe Energy Level for Environmental Sensing,” Proc. SPIE 2222, Atmospheric Propagation and Remote Sensing III, 1994; doi: 10.1117/12.178007; https://doi.org/10.1117/12.178007.

  8. A. V. Bukharin, V. M. Linkin, A.N. Lipatov, et al., in Proceedings of the 19th International Laser Radar Conference, p. 241 (1998); https://doi.org/ntrs.nasa.gov/

    Google Scholar 

  9. https://doi.org/mars.nasa.gov/programmissions/missions/past/polarlander/

  10. I, Prochazka, J. Kodet, and J. Blasej, Rev. Sci. Instrum. 87, 056102 (2016).

    Article  ADS  Google Scholar 

  11. T. R. Watters, K. Daud, M. E. Banks, et al., Nat. Geosci. 9, 743 (2016); DOI: 10.1038/ngeo2814

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. M. Pershin.

Additional information

Original Russian Text © S.M. Pershin, G.I. Dolgikh, A.F. Bunkin, M.Ya. Grishin, V.A. Zavozin, V.K. Klinkov, V.N. Lednev, V.S. Makarov, A.A. Plotnikov, A.V. Turin, 2018, published in Kratkie Soobshcheniya po Fizike, 2018, Vol. 45, No. 7, pp. 32–38.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pershin, S.M., Dolgikh, G.I., Bunkin, A.F. et al. Correlation of Aerosol Scattering Lidar and Laser Strainmeter Signals during Earth’s Crust Deformations. Bull. Lebedev Phys. Inst. 45, 214–217 (2018). https://doi.org/10.3103/S1068335618070059

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068335618070059

Keywords

Navigation