Advertisement

Bulletin of the Lebedev Physics Institute

, Volume 45, Issue 2, pp 56–62 | Cite as

On the Properties of Transparency Windows Near the Band Gap Edge of One-Dimensional Photonic Crystals

  • A. A. Kraiski
  • A. V. Kraiski
Article
  • 13 Downloads

Abstract

In the general case of the confined one-dimensional photonic crystal (PC), the properties of transparency windows near the band gap, in which the field amplitude significantly increases, are studied using the perturbation theory. Expressions for the dependences of the maximum gain of the field amplitude, positions and widths of transparency windows on crystal thickness H and window number n are obtained; in this case, the knowledge of particular types of fields are not required. Expressions for the field in the crystal and the intensities of reflected and transmitted light, which are defined by the fields at the quasimomentum q0 corresponding to the band edge, are obtained.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. Yablonovitch, Phys. Rev. Lett. 58, 2059 (1987).ADSCrossRefGoogle Scholar
  2. 2.
    A. A. Kraiski and A. V. Kraiski, in Proceedings of the Third All-Russian Conference on Photonics and Information Optics (MIFI, Moscow, 2014), p.61.Google Scholar
  3. 3.
    V. V. Kapaev, Kvant. Elektron. 16, 2271 (1989) [Sov. J. Quantum Electron. 19, 1460 (1989)].ADSGoogle Scholar
  4. 4.
    J.M. Bendickson, J. P. Dowling, and M. Scalora, Phys. Rev. E 53, 4107 (1996).ADSCrossRefGoogle Scholar
  5. 5.
    M. J. Steel and C. Martijn de Sterke, J. Opt. Soc. Am. B 12, 2442 (1995).ADSCrossRefGoogle Scholar
  6. 6.
    J. W. Haus, R. Viswanathan, M. Scalora, et al., Phys.Rev.A 57, 2120 (1998).ADSCrossRefGoogle Scholar
  7. 7.
    D. Pezzetta, C. Sibilia, M. Bertolotti, et al., J. Opt. Soc. Am. B 18, 1326 (2001).ADSCrossRefGoogle Scholar
  8. 8.
    C. De Angelis, F. Gringoli, M. Midrio, et al., J. Opt. Soc. Am. B Phys. 18, 348 (2001).ADSCrossRefGoogle Scholar
  9. 9.
    A. Settimi, S. Severini, N. Mattiucci, et al., Phys. Rev. E 68, 026614 (2003).ADSCrossRefGoogle Scholar
  10. 10.
    W. C. L. Hopman, H. J. W. M. Hoekstra, R. Dekker, et al., Opt. Express 15, 1851 (2007).ADSCrossRefGoogle Scholar
  11. 11.
    A. Figotin and I. Vitebskiy, Waves in Random and ComplexMedia 16, 293 (2006).ADSCrossRefGoogle Scholar
  12. 12.
    M. Merklein, I. V. Kabakova, T. F. S. Buettner, et al., Nat.Commun. 6, 6396 (2015).CrossRefGoogle Scholar
  13. 13.
    S. Wicharn, Pr. Buranasiri, Ch. Ruttanapunt, et al., Appl. Opt. 52, 6090 (2013).ADSCrossRefGoogle Scholar
  14. 14.
    S. Joseph, M. S. Khan, and A. K. Hafiz, Phys. Lett. A 378, 1296 (2014).ADSCrossRefGoogle Scholar
  15. 15.
    J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton University Press, 1995).zbMATHGoogle Scholar
  16. 16.
    V. I. Kopp, B. Fan, H. K. M. Vithana, and A. Z. Genack, Opt. Lett. 23, 1707 (1998).ADSCrossRefGoogle Scholar
  17. 17.
    V. Boyko, G. Dovbeshko, O. Fesenko, et al., Mol. Cryst. Liq. Cryst. 535, 30 (2011).CrossRefGoogle Scholar
  18. 18.
    G. Dovbeshko, O. Fesenko, V. Boyko, et al., Ukr. J. Phys. 57(2), 154 (2012).Google Scholar
  19. 19.
    D. A. Mamichev, K. A. Gonchar, V. Y. Timoshenko, et al., Raman. Spectrosc. 42, 1392 (2011).ADSCrossRefGoogle Scholar
  20. 20.
    V. S. Gorelik, A. D. Kudryavtseva, and N. V. Tcherniega, J. Russ. Laser. Res. 29, 551 (2008).CrossRefGoogle Scholar
  21. 21.
    V. S. Gorelik, A. D. Kudryavtzeva, N. V. Tcherniega, et al., J. Russ. Laser. Res. 34, 1 (2013).CrossRefGoogle Scholar
  22. 22.
    V. S. Gorelik, Kvant. Elektron. 37, 409 (2007) [Quantum. Electron. 37, 409 (2007)].ADSCrossRefGoogle Scholar
  23. 23.
    V. S. Gorelik and V. V. Kapaev, Zh. Eksp. Teor. Fiz. 150, 435 (2016) [J. Exp. Theor. Phys. 123, 373 (2016)].Google Scholar
  24. 24.
    L. D. Landau and E. M. Lifshitz, Quantum Mechanics (Fizmatgiz, Moscow, 1963; Pergamon, New York, 1977).zbMATHGoogle Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  1. 1.Lebedev Physical InstituteRussian Academy of SciencesMoscowRussia

Personalised recommendations