Skip to main content
Log in

Mobile adaptive holographic laser hydrophone

  • Published:
Bulletin of the Lebedev Physics Institute Aims and scope Submit manuscript

Abstract

A mobile adaptive holographic laser hydrophone based on a dynamic hologram formed in a photorefractive crystal is developed. The hydrophone sensitivity is to –163 dB (rel. 1V/μPa) or 8.6 · 10−3 rad/Pa in the frequency range of 1–15 kHz. Field tests of the hydrophone were performed in water area of a sea bay. The results confirm the efficiency of the use of measuring systems based on adaptive holographic interferometers to solve problems of recording weak signals (acoustic, hydroacoustic, and others) under non-laboratory conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. J. A. Bucaro, H. D. Dardy, and E. F. Carome, J. Acoust. Soc. Am. 62, 1302 (1977).

    Article  ADS  Google Scholar 

  2. F. El-Hawary, The Ocean Engineering Handbook (CRC Press, New York, London, 2000).

    Google Scholar 

  3. J. Posada-Roman, J. A. Garcia-Souto, and J. Rubio-Serrano, Sensors 12, 4793 (2012).

    Article  Google Scholar 

  4. H. B. Lee, Y. H. Kim, K. S. Park, et al., Sensors 12, 2467 (2012).

    Article  Google Scholar 

  5. T. K. Lim, Y. Zhou, Y. Lin, et al., Opt. Commun. 159, 301 (1999).

    Article  ADS  Google Scholar 

  6. P. Morris, A. Hurrell, and P. Beard, Proc. Inst. Acoust. 28, 717 (2006).

    Google Scholar 

  7. G. I. Dolgikh, S. S. Budrin, S. G. Dolgikh, et al., Podvodnye Issledovaniya i Robototekhnika 1, 40 (2007).

    Google Scholar 

  8. J. Staudenraus and W. Eisenmenger, Ultrasonics 31, 267 (1993).

    Article  Google Scholar 

  9. A. A. Freschi and J. Frejlich, Opt. Lett. 20, 635 (1995).

    Article  ADS  Google Scholar 

  10. C. H. Shi, J. P. Chen, G. L. Wu, et al., Opt. Express 14, 5098 (2006).

    Article  ADS  Google Scholar 

  11. O. Karhade, L. Degertekin, and T. Kurfess, Opt. Lett. 34, 3044 (2009).

    Article  ADS  Google Scholar 

  12. A. A. Kamshilin and M. P. Petrov, Opt. Commun. 53, 23 (1985).

    Article  ADS  Google Scholar 

  13. R. V. Romashko, M. N. Bezruk, S. A. Ermolaev, et al., Kratkie Soobshcheniya po Fizike FIAN 42(7), 14 (2015) [Bulletin of the Lebedev Physics Institute 42, 201 (2015)].

    Google Scholar 

  14. R. V. Romashko, Yu. N. Kulchin, M. N. Bezruk, and S. A. Ermolaev, Kvant. Elektron. 46, 277 (2016) [Quantum Electron. 46, 277 (2016)].

    Article  ADS  Google Scholar 

  15. M. N. Bezruk, S. A. Ermolaev, Yu. N. Kulchin, and R.V. Romashko, Proc.SPIE 10176, 1017614 (2016).

    Article  Google Scholar 

  16. S. Di Girolamo, A. A. Kamshilin, R. V. Romashko, et al., Opt. Express 15, 545 (2007).

    Article  ADS  Google Scholar 

  17. S. DiGirolamo, R.V. Romashko, Yu. N. Kulchin, and A.A. Kamshilin, Opt. Commun. 283, 128 (2010).

    Article  ADS  Google Scholar 

  18. R. V. Romashko, S. Di Girolamo, Yu. N. Kulchin, and A. A. Kamshilin, J. Opt. Soc. Am. B 27, 311 (2010).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. V. Romashko.

Additional information

Original Russian Text © R.V. Romashko, M.N. Bezruk, S.A. Ermolaev, I.N. Zavestovskaya, Yu.N. Kulchin, 2017, published in Kratkie Soobshcheniya po Fizike, 2017, Vol. 44, No. 7, pp. 32–39.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Romashko, R.V., Bezruk, M.N., Ermolaev, S.A. et al. Mobile adaptive holographic laser hydrophone. Bull. Lebedev Phys. Inst. 44, 205–209 (2017). https://doi.org/10.3103/S1068335617070053

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068335617070053

Keywords

Navigation