Advertisement

Bulletin of the Lebedev Physics Institute

, Volume 42, Issue 5, pp 133–137 | Cite as

Stationary cylindrical structures in pinch discharges

  • V. Ya. NikulinEmail author
  • S. A. Startsev
  • S. P. Tsybenko
Article

Abstract

Stationary cylindrical plasma structures are numerically studied in the simple model within the Davydov-Zakharov formalism. It is shown that such solutions exist in the presence of tangential discontinuities and discontinuity in which a magnetic field, remaining unchanged in magnitude, reverses its direction. The found structures depend on two parameters: the minimum plasma density in the plasma channel and the radius at which this density is reached. The found solutions describe filaments in pinch discharges.

Keywords

pinch discharges London current tangential discontinuity current filaments 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    I. F. Kvartskhava, K. N. Kervalidze, Yu. S. Gvaladze, and G. G. Zukakishvili, Yadernyi Sintez 5, 181 (1965).Google Scholar
  2. 2.
    R. Haas, H. Krompholz, L. Michel, et al., Phys. Lett. A 88, 403 (1982).ADSCrossRefGoogle Scholar
  3. 3.
    M. Milanese, R. Moroso, and J. Puozo, IEEE Trans. Plasma Sci. 21, 1 (1993).Google Scholar
  4. 4.
    L. Bilbao, H. Bruzzone, V. Ya. Nikulin, J. P. Roger, Preprint No. 80 (Centro di Frascati, Frascati, Rome, 1980).Google Scholar
  5. 5.
    V. A. Gribkov, V. Ya. Nikulin, V. M. Fadeev, and Ya. K. Khodataev, J. Moscow Phys. Soc. 3, 75 (1993).Google Scholar
  6. 6.
    V. Ya. Nikulin, S. N. Polukhin, and A. A. Tikhomirov, Fiz. Plazmy 31, 642 (2005) [Plasma Phys. Rep. 31, 591 (2005)].Google Scholar
  7. 7.
    W. Sadowski, H. Herold, H. Schmidt, and M. Shakhatre, Phys. Lett. A 105, 117 (1984).ADSCrossRefGoogle Scholar
  8. 8.
    V. S. Imshennik and V. V. Neudachin, Fiz. Plazmy 13, 1226 (1987).Google Scholar
  9. 9.
    S. I. Braginskii and V. V. Vikhrev, Teplofiz. Vysok. Temp. 14, 254 (1976).ADSGoogle Scholar
  10. 10.
    J. Guillory, D. V. Rose, and E. J. Lerner, in Dense Z-Pinches: 7th International Conference, Ed. by D.A. Hammer and B.R. Kusse (American Institute of Physics, New York, 2009), p. 203.Google Scholar
  11. 11.
    W. H. Bostick, W. Prior, L. Grunberger, and G. Emmert, Phys. Fluids 9, 2078 (1966).ADSCrossRefGoogle Scholar
  12. 12.
    V. Nardi, Phys. Rev. Lett. 25, 718 (1970).ADSCrossRefGoogle Scholar
  13. 13.
    A. Di Vita, Eur. Phys. J. D 54, 451 (2009).ADSCrossRefGoogle Scholar
  14. 14.
    V. M. Fadeev, U. Yusupaliev, and S. A. Shuteev, in Abstracts of 15th International Conference on High-Power Particle BEAMS “BEAMS’ 2004”, Saint-Petersburg, Russia, 2004 (Saint-Petersburg, Nauka, 2004), p.291.Google Scholar
  15. 15.
    V. Ya. Nikulin and S. P. Tsybenko, Phys. Scr. 55, 90 (1997).ADSCrossRefGoogle Scholar
  16. 16.
    S. P. Tsybenko, J. Plasma Phys. 62, 117 (1999).ADSCrossRefGoogle Scholar
  17. 17.
    S. P. Tsybenko, Preprint No. 24, FIAN (Lebedev Physical Institute, Moscow, 2004).Google Scholar
  18. 18.
    L. D. Landau and E. M. Lifshitz, Electrodynamics of Continuous Media (Nauka, Moscow, 1992; Butterworth-Heinemann, 1984).Google Scholar
  19. 19.
    K. N. Koshelev and N. R. Pereira, J. Appl. Phys. 69, R21 (1991).ADSCrossRefGoogle Scholar
  20. 20.
    V. A. Veretennikov, A. N. Dolgov, O. N. Krokhin, and O. G. Semenov, Fiz. Plazmy 11, 1007 (1985).Google Scholar
  21. 21.
    A. Bernard, H. Bruzzone, P. Choi, et al., J. Moscow Phys. Soc. 8, 93 (1998).Google Scholar

Copyright information

© Allerton Press, Inc. 2015

Authors and Affiliations

  • V. Ya. Nikulin
    • 1
    • 3
    Email author
  • S. A. Startsev
    • 2
  • S. P. Tsybenko
    • 1
  1. 1.Lebedev Physical InstituteRussian Academy of SciencesMoscowRussia
  2. 2.Financial University under the Government of the Russian FederationMoscowRussia
  3. 3.National Research Nuclear University “MEPhI”MoscowRussia

Personalised recommendations