Advertisement

Bulletin of the Lebedev Physics Institute

, Volume 42, Issue 5, pp 127–132 | Cite as

On projective motion in the 6-dimensional pseudo-Riemannian space of the special type

  • Z. Kh. ZakirovaEmail author
Article
  • 14 Downloads

Abstract

In this note we continue studying the 6-dimensional pseudo-Riemannian space V 6(g ij ) with signature [+ +−−−−], which admits projective motions, i. e. continuous transformation groups preserving geodesics. We find a generic defining function of projective motion in the 6-dimensional pseudo-Riemannian space of the special type.

Keywords

Curvature Tensor LEBEDEV Physic Institute Projective Transformation Lorentzian Manifold High Dimensional Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Z. Kh. Zakirova, Candidate’s Dissertation in Mathematics and Physics (Kazan State University, Kazan, 2001).Google Scholar
  2. 2.
    Z. Kh. Zakirova, The results of science and technology. Series: Geometry problems, No. 23, 57 (1997).Google Scholar
  3. 3.
    Z. Kh. Zakirova, The abstracts of the international geometric seminar named after N. I. Lobachevsky (Kazan, 52, 1997).Google Scholar
  4. 4.
    Z. Kh. Zakirova, Izvestiya Vuzov. Matematika, No. 9, 78 (1999).Google Scholar
  5. 5.
    Z. Kh. Zakirova, Czech. J. Phys. 50, 1541 (2005).MathSciNetADSCrossRefGoogle Scholar
  6. 6.
    Z. Kh. Zakirova, Theor. Math. Phys. 158, 293 (2009).zbMATHMathSciNetCrossRefGoogle Scholar
  7. 7.
    Z. Kh. Zakirova, Kratkie Soobsheniya po Fizike FIAN 38(9), 39 (2011) [Bulletin of the Lebedev Physics Institute 38, 270 (2011)].Google Scholar
  8. 8.
    Z. Kh. Zakirova, Ufa Mathematical Journal 5(3), 40 (2013).CrossRefGoogle Scholar
  9. 9.
    B. A. Dubrovin, S. P. Novikov, and A. T. Fomenko, Modern Geometry (URSS, Moscow, 1998).Google Scholar
  10. 10.
    L. P. Eizenhart, Riemannian geometry (Princeton University Press, 1997).Google Scholar
  11. 11.
    A. V. Aminova, Usp. Mat. Nauk 50(1), 69 (1995).zbMATHMathSciNetGoogle Scholar
  12. 12.
    P. A. Shirokov, Izvestiya Kazanskogo Fiziko-Matematicheskogo Obshchestva 25(2), 86 (1925).Google Scholar

Copyright information

© Allerton Press, Inc. 2015

Authors and Affiliations

  1. 1.Kazan State Power Engineering UniversityKazanRussia

Personalised recommendations