Bulletin of the Lebedev Physics Institute

, Volume 42, Issue 4, pp 115–119 | Cite as

Emission of nanosecond laser plasma of gadolinium

  • A. A. Fronya
  • V. N. Puzyrev
  • A. N. StarodubEmail author
  • O. F. Yakushev


The results of the study of laser plasma generated by nanosecond laser radiation with controlled spatial coherence incident on various targets containing gadolinium are presented. X-ray radiation of such plasma is studied using an X-ray diagnostic system developed and fabricated by the authors. Metal gadolinium, gadolinium oxide, gadolinium and aluminum alloy, and aluminum were used as targets. The electron temperature of generated plasma and the efficiency of laser-to-X-ray radiation conversion are estimated; the emitting region sizes are determined. Particular attention is paid to the study of laser plasma spectra in the X-ray region near the wavelength of 6.7 nm.


laser plasma plasma emission spectrum vacuum ultraviolet plasma X-ray radiation plasma diagnostics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. Yu. Zuev, A. E. Pestov, N. N. Salashchenko, et al., Izv. Ross. Akad. Nauk Ser. Fiz. 77, 1 (2013) [Bull. Russ. Acad. Sci. Phys. 77, 6 (2013)].Google Scholar
  2. 2.
    EUV Sources for Lithography, Ed. by Vivek Bakshi (SPIE Press, Bellingham, 2006).Google Scholar
  3. 3.
    P. Wachulak, A. Bartnik, H. Fiedorowicz, et al., AIP Conf. Proc. 1437, 79 (2012).CrossRefADSGoogle Scholar
  4. 4.
    D. Kilbane and G. O’Sullivan, J. Appl. Phys. 108, 10 (2010).CrossRefGoogle Scholar
  5. 5.
    S. S. Churilov, R. R. Kildiyarova, A. N. Ryabtsev, et al., Phys. Scr. 80, 045303 (2009).CrossRefADSGoogle Scholar
  6. 6.
    G. O’Sullivan, T. Cummins, P. Dunne, et al., Phys. Scr. T156, 014105 (2013).CrossRefADSGoogle Scholar
  7. 7.
    B. Li, P. Dunne, T. Higashiguchi, et al., Appl. Phys. Lett. 99, 231502 (2011).CrossRefADSGoogle Scholar
  8. 8.
    N. N. Salashchenko and N. I. Chkhalo, “Short-Wavelength Projection Lithography,” Vestnik RAN 78, 5 (2008).Google Scholar
  9. 9.
    T. Otsuka, D. Kilbane, J. White, et al., Appl. Phys. Lett. 97, 111503 (2010).CrossRefADSGoogle Scholar
  10. 10.
    T. Higashiguchi, T. Otsuka, N. Yugami, et al., Appl. Phys. Lett. 99, 191502 (2011).CrossRefADSGoogle Scholar
  11. 11.
    V. Y. Banine, K. N. Koshelev, and G.H. P. M. Swinkels, J. Phys. D: Appl. Phys. 44, 253001 (2011).CrossRefADSGoogle Scholar
  12. 12.
    T. Cummins, T. Otsuka, N. Yugami, et al. Appl. Phys. Lett. 100, 061118 (2012).CrossRefADSGoogle Scholar
  13. 13.
    S. I. Fedotov, L. P. Feoktistov, M. V. Osipov, and A. N. Starodub, J. Russ. Laser Res. 25, 1 (2004).CrossRefGoogle Scholar
  14. 14.
    V. A. Burakov, B. L. Vasin, A. A. Kologrivov, et al., PreprintNo. 3, FIAN (Lebedev Physical Institute, Russian Academy of Sciences, Moscow, 2012).Google Scholar
  15. 15.
    O. B. Anan’in, Yu. V. Afanas’ev, Yu. A. Bykovskii, and O. N. Krokhin, Laser plasma. Physics and Application (MIFI, Moscow, 2003) [in Russian].Google Scholar
  16. 16.
    A. A. Fronya, V. A. Burakov, A. A. Kologrivov, et al., J. Phys.: Conf. Ser. 572, 012054 (2014).ADSGoogle Scholar
  17. 17.
    Yu. E. Borozdin, E. D. Kazakov, V. I. Luchin, et al., Pisma Zh. Eksp. Teor. Fiz. 87, 1 (2008) [JETP Lett. 87, 27 (2008)].Google Scholar

Copyright information

© Allerton Press, Inc. 2015

Authors and Affiliations

  • A. A. Fronya
    • 1
    • 2
  • V. N. Puzyrev
    • 1
  • A. N. Starodub
    • 1
    Email author
  • O. F. Yakushev
    • 1
  1. 1.Lebedev Physical InstituteRussian Academy of SciencesMoscowRussia
  2. 2.National Research Nuclear University “MEPhI”MoscowRussia

Personalised recommendations