Bulletin of the Lebedev Physics Institute

, Volume 42, Issue 4, pp 96–101 | Cite as

On one specific feature of multiply ionized plasma

  • U. YusupalievEmail author


Based on experimental data and numerical calculations, the ratios of the energy I expended for plasma ionization to its thermal energy E heat(π ion = I/E heat) in the region of multiple equilibrium gas (He, Ne, Ar, Kr, Xe, N2, F, C, and air) ionization are determined. It is shown that the ratio π ion remains constant (π ion = const = C ion) with varying plasma temperature T at a given concentration n of primary particles (atoms, molecules). The constant C ion depends on the gas type and concentration n: C ion increases with increasing atomic mass and decreasing n. It is shown that this constant decreases from ∼3.0 to 1.4 in the concentration variation range n ≈ 1023–1026 m−3 at the degree of equilibrium ionization α e > 1.


multiply ionized plasma thermal ionization 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Yu. P. Raizer, Gas Discharge Physics (Nauka, Moscow, 1987) p. 591 [in Russian].Google Scholar
  2. 2.
    Ya. B. Zeldovich and Yu. P. Raizer, Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena (Nauka, Moscow, 1966) [in Russian].Google Scholar
  3. 3.
    M. A. Tsikulin and E. G. Popov, Radiative Properties of Shock Waves in Gases (Nauka, Moscow, 1977) [in Russian].Google Scholar
  4. 4.
    Physics of High Energy Density, Ed. by P. Caldirola and H. Knoepfel (Academic, New York, 1971).Google Scholar
  5. 5.
    V. D. Zvorykin, “High-Power Laser III,” Proc. SPIE 4065, 128 (2000).CrossRefADSGoogle Scholar
  6. 6.
    S. Yu. Luk’yanov, Hot Plasma and Controlled Nuclear Fusion (Nauka, Moscow, 1975) [in Russian].Google Scholar
  7. 7.
    I. S. Marshak, A. S. Dvoinikov, V. P. Kirsanov, et al., Pulsed Light Sources, Ed. by I.S. Marshak (Energiya, Moscow, 1978) [in Russian].Google Scholar
  8. 8.
    U. Yusupaliev, Kratkie Soobshcheniya po Fizike FIAN 34(9), 28 (2007) [Bulletin of the Lebedev Physics Institute 34, 264 (2007)].Google Scholar
  9. 9.
    U. Yusupaliev, Kratkie Soobshcheniya po Fizike FIAN 37(3), 23 (2010) [Bulletin of the Lebedev Physics Institute 37, 71 (2010)].Google Scholar
  10. 10.
    A. S. Kamrukov, N. P. Kozlov, Yu. S. Protasov, et al., Teplofiz. Vys. Temp. 27(1), 152 (1989).ADSGoogle Scholar
  11. 11.
    A. F. Aleksandrov and A. A. Rukhadze, Physics of High-Current Electric-Discharge Light Sources (Atomizdat, Moscow, 1976) [in Russian].Google Scholar
  12. 12.
    B. V. Zamyshlyaev, E. L. Stupitskii, A. G. Guz, et al., Composition and Thermodynamic Functions of Plasma. Handbook (Energoatomizdat, Moscow, 1984) [in Russian].Google Scholar
  13. 13.
    N. M. Kuznetsov, Thermodynamic Functions and Air Shock Adiabates at High Temperatures (Mashinostroenie, Moscow, 1965) [in Russian].Google Scholar
  14. 14.
    A. S. Kamrukov, N. P. Kozlov, S. N. Chuvashov, et al., Thermodynamic and Optical Properties of Ionized Gases at Temperatures to 100 eV, Ed. by Yu.S. Protasov (Energoatomizdat, Moscow, 1988) [in Russian].Google Scholar

Copyright information

© Allerton Press, Inc. 2015

Authors and Affiliations

  1. 1.Prokhorov General Physics InstituteRussian Academy of SciencesMoscowRussia

Personalised recommendations