Advertisement

Bulletin of the Lebedev Physics Institute

, Volume 42, Issue 1, pp 13–16 | Cite as

On the properties of systems with Bose-Einstein condensate in the Coulomb model of matter

  • V. B. Bobrov
  • S. A. TriggerEmail author
Article

Abstract

An alternative description of the equilibrium system of interacting bosons in the presence of a Bose-Einstein condensate, based on the initial consideration of the system in a very large but finite volume, is presented. Using exact sum rules for the spectral function, the existence of a discontinuity in the energy spectrum of quasiparticles at small momenta, associated with the presence of condensate and the Coulomb interaction, is shown. The possible existence of the Meissner effect in superfluid helium as a Coulomb system with Bose-Einstein condensate for nuclei is shown.

Keywords

Bose-Einstein condensate Coulomb model of matter spectral function Meissner effect 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    O. Penrose, Philos. Mag. 42, 1373 (1951).CrossRefzbMATHGoogle Scholar
  2. 2.
    O. Penrose and L. Onsager, Phys. Rev. 104, 576 (1956).ADSCrossRefzbMATHGoogle Scholar
  3. 3.
    C. N. Yang, Rev.Mod. Phys. 34, 694 (1962).ADSCrossRefGoogle Scholar
  4. 4.
    N. N. Bogoliubov and N. N. Bogoliubov (junior), Introduction into Quantum Statistical Mechanics (Nauka, Moscow, 1984) [in Russian].Google Scholar
  5. 5.
    R. Balescu, Equilibrium and Nonequilibrium Statistical Mechanics (Wiley, New York, 1975).zbMATHGoogle Scholar
  6. 6.
    V. B. Bobrov, S. A. Triger, and P. Shram, Zh. Eksp. Teor.Fiz. 107, 1526 (1995).Google Scholar
  7. 7.
    A. A. Abrikosov, L. P. Gor’kov, I. E. Dzyaloshinskii, Methods of Quantum Field Theory in Statistical Physics (Nauka, Moscow, 1962) [in Russian].Google Scholar
  8. 8.
    O. K. Kalashnikov and E. S. Fradkin, Teor. Mat. Fiz. 5, 417 (1970) [Theor. Math. Phys. 5, 1250 (1970)].Google Scholar
  9. 9.
    E. H. Lieb and J. P. Solovej, Comm. Math. Phys. 252, 485 (2004).ADSCrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    V. B. Bobrov, I.M. Sokolov, and S. A. Trigger, Phys. Plasmas 9, 062101 (2012).ADSCrossRefGoogle Scholar
  11. 11.
    G. L. Sewell, J. Stat. Phys. 61, 415 (1990).ADSCrossRefMathSciNetGoogle Scholar
  12. 12.
    S. Koh, Phys. Rev. B 68, 144502 (2003).ADSCrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2015

Authors and Affiliations

  1. 1.Joint Institute of High TemperaturesRussian Academy of SciencesMoscowRussia
  2. 2.National Research University “Moscow Power Engineering Institute”MoscowRussia
  3. 3.Prokhorov General Physics InstituteRussian Academy of SciencesMoscowRussia

Personalised recommendations