Skip to main content
Log in

On the possibility of detecting low-energy scalar and pseudo-scalar bosons

  • Published:
Bulletin of the Lebedev Physics Institute Aims and scope Submit manuscript

Abstract

The properties of the conversion of “cold” extra-light scalar or pseudo-scalar bosons weakly interacting with material media to photons with energies of 0.001–1.0 meV are analyzed. Various possible experimental schemes including closed resonant cells at low temperatures and highly sensitive receivers of radio-frequency photons are presented. The existence of such elementary particles is predicted in various expansion versions of the “standard model”. Their direct or indirect detection would make it possible to clarify the nature of the “dark matter” phenomenon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. A. Ryabov, V. A. Tsarev, and A.M. Tskhovrebov, Usp. Fiz. Nauk 178, 1129 (2008).

    Article  Google Scholar 

  2. T. Appelquisi, H-C. Cheng, and B. A. Dobrescu, Phys. Rev. D 62, 035002 (2001).

    Article  ADS  Google Scholar 

  3. G. Servant and T. M. Tait, Nucl. Phys. B 650, 391 (2001).

    Article  ADS  Google Scholar 

  4. J. Goldstone, A. Salam, and S. Weinberg, Phys. Rev. 127, 965 (1962).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  5. L. B. Okun, Zh. Eksp. Teor. Fiz. 83, 892 (1982).

    ADS  Google Scholar 

  6. S. Hoffmann, Phys. Lett. B 193, 117 (1986); L. J. Rosenberg and K. A. van Bibber, Phys. Rep. 325, 1 (2000).

    Article  ADS  Google Scholar 

  7. C. Picciotto and M. Pospelov, Phys. Lett. B 605, 15 (2005).

    Article  ADS  Google Scholar 

  8. J. Jaeckel, J. Redondo, and A. Ringwald, Europhys. Lett. 87, 10010 (2009).

    Article  ADS  Google Scholar 

  9. P. Sikivie, D. B. Tanner, and K. van Bibber, Phys. Rev. Lett. 98, 172002 (2007).

    Article  ADS  Google Scholar 

  10. K. A. van Bibber, N. R. Dagdeviren, S. E. Koonin, et al., Phys. Rev. Lett. 59, 759 (1987).

    Article  ADS  Google Scholar 

  11. L. D. Duffy, P. Sikivie, D. B. Tanner, et al., Phys. Rev. D 74, 012006 (2006).

    Article  ADS  Google Scholar 

  12. I. J. Rosenberg and K. A. Bibber, Phys. Rep. 325, 1 (2000).

    Article  ADS  Google Scholar 

  13. D. D. Stancil, Phys. Rev. D 76, 111701 (R) (2007).

    Article  ADS  Google Scholar 

  14. A. Afanasev, O. K. Baker, K. B. Beard, et al., Phys. Rev. Lett. 101, 120401 (2008).

    Article  ADS  Google Scholar 

  15. Guido Mueller, Pierre Sikivie, D. B. Tanner, and Karl van Bibber, Phys. Rev. D 80, 072004 (2009).

    Article  Google Scholar 

  16. P. Sikivie, D. B. Tanner, and Karl van Bibber, Phys. Rev. Lett. 98, 172002 (2007).

    Article  ADS  Google Scholar 

  17. J. Hoskins, J. Hwang, P. Sikivie, and D. B. Tanner, Phys. Rev. Lett. 104, 041301 (2010).

    Article  ADS  Google Scholar 

  18. B. D. Josephson, Phys. Lett. 1, 251 (1962).

    Article  ADS  MATH  Google Scholar 

  19. S. Yu. Larkin, Measurement of the Monochromatic Microwave Field Frequency Using the Nonstationary Josephson Effect (Naukova Dumka, Kiev, 1999) [in Russian].

    Google Scholar 

  20. A. Shapiro, R. Janus, and S. Holly, Rev.Mod. Phys. 36, 223 (1964).

    Article  ADS  Google Scholar 

  21. A. I. Golovashkin, V. G. Elenskii, and K. K. Likharev, Josephson Effect and its Application (Nauka, Moscow, 1983) [in Russian].

    Google Scholar 

  22. E. M. Purcell, Phys. Rev. 69, 681 (1946).

    Article  Google Scholar 

  23. E. Yablonovitch, Phys. Rev. Lett. 58, 2059 (1987).

    Article  ADS  Google Scholar 

  24. E. John, Phys. Rev. Lett. 58, 2486 (1987).

    Article  ADS  Google Scholar 

  25. J. P. Dowling and C. M. Bowden, Phys. Rev. A 46, 612 (1992).

    Article  ADS  Google Scholar 

  26. S. John and T. Quang, Phys. Rev. Lett. 74, 3419 (1995).

    Article  ADS  Google Scholar 

  27. V. N. Astralov, V. N. Bogomolov, A. A. Kapkyanskii, et al., Nuovo Cimento D 17, 1349 (1995).

    Article  ADS  Google Scholar 

  28. V. N. Bogomolov, S. V. Gaponenko, A.M. Kapitonov, et al., Appl. Phys. A 63, 613 (1996).

    Article  ADS  Google Scholar 

  29. V. S. Gorelik, Quantum Electronics 37, 409 (2007).

    Article  ADS  Google Scholar 

  30. V. S. Gorelik, Laser Physics 3, 1479 (2008).

    Article  ADS  Google Scholar 

  31. Yu. A. Voshchinskii and V. S. Gorelik, Inorg.Mater. 47, 148 (2011).

    Article  Google Scholar 

  32. V. S. Gorelik, Eur. J. Appl. Phys. 49, 3307 (2010).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. S. Gorelik.

Additional information

Original Russian Text © V.S. Gorelik, M.A. Dresvyannikov, L.N. Zherikhina, A.M. Tskhovrebov, 2014, published in Kratkie Soobshcheniya po Fizike, 2014, Vol. 41, No. 1, pp. 33–40.

About this article

Cite this article

Gorelik, V.S., Dresvyannikov, M.A., Zherikhina, L.N. et al. On the possibility of detecting low-energy scalar and pseudo-scalar bosons. Bull. Lebedev Phys. Inst. 41, 18–21 (2014). https://doi.org/10.3103/S1068335614010047

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068335614010047

Keywords

Navigation