Advertisement

Bulletin of the Lebedev Physics Institute

, Volume 39, Issue 12, pp 330–333 | Cite as

Fabrication of graphene nanostructures by probe nanoablation

  • V. I. KonovEmail author
  • V. D. Frolov
  • E. V. Zavedeev
  • V. V. Kononenko
  • S. V. Kosheleva
  • A. A. Khomich
  • V. G. Pereverzev
  • A. Grigorenko
  • K. S. Novoselov
Article

Abstract

We present the results of the study of graphene nanoablation under mechanical stress of an ultrasharp (the rounding radius is ∼2 nm) tip of a scanning probe microscope (SPM)). It was found that the SPM probe contact with graphene results in average removal of 7 · 10−3−5 · 10−2 nm of film per scan, i.e., only a few carbon atoms or clusters, in the impact area. The capability of this precision nanoablation process was shown in developing graphene nanoislands and nanoribbons ∼1 µm long and ∼10 nm wide.

Keywords

graphene nanoablation nanostructure 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. S. Novoselov, A. K. Geim, S. V. Morozov, et al., Science 306(5696), 666 (2004).ADSCrossRefGoogle Scholar
  2. 2.
    T. G. Pedersen, A.-P. Jauho, and K. Pedersen, Phys. Rev. B 79, 113406 (2009).ADSCrossRefGoogle Scholar
  3. 3.
    L. Brey and H. A. Fertig, Phys. Rev. B 73, 235411 (2006).ADSCrossRefGoogle Scholar
  4. 4.
    C. T. Nottbohm, A. Turchanin, A. Beyer, and A. Golzhauser, J. Vac. Sci. Technol. B 27, 3059 (2009).CrossRefGoogle Scholar
  5. 5.
    B. Prevel, J.-M. Benoit, L. Bardotti, et al., Appl. Phys. Lett. 99, 083116 (2011).ADSCrossRefGoogle Scholar
  6. 6.
    S. Tongay, M. Lemaitre, J. Fridmann, et al., Appl. Phys. Lett. 100, 073501 (2012).ADSCrossRefGoogle Scholar
  7. 7.
    J. A. Leon, E. S. Alves, D. C. Elias, et al., J. Vac. Sci. Technol. B 29, 021204 (2011).CrossRefGoogle Scholar
  8. 8.
    L. Guo, H.-B. Jiang, R.-Q. Shao, et al., Carbon 50, 1667 (2012).CrossRefGoogle Scholar
  9. 9.
    Z. Chen, Y-M. Lin, M. J. Rooks, and P. Avouris, PhysicaE 40, 228 (2007).ADSCrossRefGoogle Scholar
  10. 10.
    M. Y. Han, B. Ozyilmaz, Y. Zhang, and P. Kim, Phys. Rev. Lett. 98, 206805 (2007).ADSCrossRefGoogle Scholar
  11. 11.
    G. Rius, N. Camara, P. Godignon, et al., J. Vac. Sci. Technol. B 27, 3149 (2009).CrossRefGoogle Scholar
  12. 12.
    S. Masubuchi, M. Ono, K. Yoshida, et al., Appl. Phys. Lett. 94, 082107 (2009).ADSCrossRefGoogle Scholar
  13. 13.
    Yan Jiang and Wanlin Guo, Nanotechnology 19, 345302 (2008).CrossRefGoogle Scholar
  14. 14.
    Joonkyu Park, K. B. Kim, Jun-Young Park, et al., Nanotechnology 22, 335304 (2011).CrossRefGoogle Scholar
  15. 15.
    Soeren Neubeck, Frank Freitag, Rui Yang, et al., Phys. Status Solidi B 247, 2904 (2010).CrossRefGoogle Scholar
  16. 16.
    V. D. Frolov, V. I. Konov, S.M. Pimenov, and S.V. Kosheleva, J. Phys. Conf. Ser. 291, 012035 (2011).ADSCrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2012

Authors and Affiliations

  • V. I. Konov
    • 1
    Email author
  • V. D. Frolov
    • 1
  • E. V. Zavedeev
    • 1
  • V. V. Kononenko
    • 1
  • S. V. Kosheleva
    • 1
  • A. A. Khomich
    • 1
  • V. G. Pereverzev
    • 1
  • A. Grigorenko
    • 2
  • K. S. Novoselov
    • 2
  1. 1.Prokhorov General Physics InstituteRussian Academy of SciencesMoscowRussia
  2. 2.University of ManchesterManchesterUK

Personalised recommendations