Skip to main content
Log in

Oscillating dependence of the etched steel mass on the external magnetic field

  • Published:
Bulletin of the Lebedev Physics Institute Aims and scope Submit manuscript

Abstract

The self-oscillating process of steel etching in a weak electrolyte solution (nitric acid) was studied as a function of the external magnetic field. The dominant feature of the process is its enhancement for most values of the external magnetic field from a chosen range. It was shown that the dependence of the etched steel mass on the magnetic field is oscillating and the corroded surface in the magnetic field is two-component.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Agladze, S. Thouvenel-Romans, and O. Steinbock, J. Phys. Chem. A 105, 7356 (2001).

    Article  Google Scholar 

  2. K. Agladze and O. Steinbock, J. Phys. Chem. A 104, 9816 (2000).

    Article  Google Scholar 

  3. S. V. Murphya and D. B. Hibbert, Phys. Chem. Chem. Phys. 1, 5163 (1999).

    Article  Google Scholar 

  4. R. S. Lillie, J. Gen. Physiol. 7, 473 (1925).

    Article  Google Scholar 

  5. K. Agladze, S. Thouvenel-Romans, and O. Steinbock, Phys. Chem. Chem. Phys. 3, 1326 (2001).

    Article  Google Scholar 

  6. R. Suzuki, Adv. Biophys. 9, 115 (1976).

    Google Scholar 

  7. H. Kaesche, Die Korrosion der Metalle (Springer, Berlin, 1990).

    Google Scholar 

  8. DECHEMA Corrosion Handbook; Corrosive Agents and their Interaction with Materials, Vol. 10: Carboxylic Acid Esters, Drinking Water, Nitric Acid., Ed. by D. Behrens, G. Kreysa, and R. Eckermann (VCH, Weinheim, 1991).

    Google Scholar 

  9. R. Suzuki, Adv. Biophys. 9, 115 (1976).

    Google Scholar 

  10. Qing-Kai Yu, Yasuyuki Miyakita, Seiichiro Nakabayashi, and Ryo Baba, J. Electrochem. Comm. 5, 321 (2003).

    Article  Google Scholar 

  11. S.V. Gorobets, O. Yu. Gorobets, O.M. Bilo, and Yu.O. Kuznetsov, Naukovi Visti NTUU“KPI” 1, 56 (2008).

    Google Scholar 

  12. S. V. Gorobets, O. Yu. Gorobets, O. A. Deina, I. Yu. Goiko, Metallofizika i Noveishie Tekhnologii 28(4), 473 (2006).

    Google Scholar 

  13. V. G. Levich, Physicochemical Hydrodynamics (Englewood Cliffs: Prentice-Hall, NJ, 1962).

    Google Scholar 

  14. M. Waskaas and Y. I. Kharkats, J. Phys. Chem. B 103, 4876 (1999).

    Article  Google Scholar 

  15. T. Z. Fahidy and T. S. Rutherford, Appl. Electrochem. 10(4), 481 (1980).

    Article  Google Scholar 

  16. M. D. Coey, G. Hinds, and M. E. G. Lyons, Europhys. Lett. 47, 267 (1999).

    Article  ADS  Google Scholar 

  17. T. Z. Fahidy, J. Appl. Electrochem. 13, 553 (1983).

    Article  Google Scholar 

  18. R. A. Tacken and L. J. J. Janssen, J. Appl. Electrochem. 25, 1 (1995).

    Article  Google Scholar 

  19. G. Dash and W. W. King, J. Electrochem. Soc. 119(1), 51 (1972).

    Article  Google Scholar 

  20. Z. H. Gu, A. Olivier, and T. Z. Fahidy, Electrochim. Acta 35, 933 (1990).

    Article  Google Scholar 

  21. N. Leventis and X. Gao, J. Am. Chem. Soc. 124(6), 9 (2002).

    Article  Google Scholar 

  22. T. Mogi, T. Sakihama, N. Hirota, and K. Kitazawa, J. Appl. Phys. 85, 5714 (1999).

    Article  ADS  Google Scholar 

  23. O. Yu. Gorobets, V. Yu. Gorobets, D. O. Derecha, O. M. Brukva, J. Phys. Chem. 112, 3373 (2008).

    Google Scholar 

  24. M. S. Quraishi and T. Z. Fahidy, in Proc. of Joint ASME/AIChE National Heat Transfer Conference, Orlando Univ., Florida, 1980 (Orlando Univ., Orlando, 1980), Paper 80-HT-93.

    Google Scholar 

  25. E. Tronel-Peyroz, Thesis Doctorat d’Etat. (Reims, France, 1978).

    Google Scholar 

  26. Yu I. Gorobets, O. Yu. Gorobets, and S. P. Mazur, Magnetohydrodynamics 40(1), 17 (2004).

    Google Scholar 

  27. S. V. Gorobets, O. Yu. Gorobets, and S. A. Reshetnyak, J. Magn. Magn. Mater. 272–276,Part 3, 2408 (2004).

    Article  Google Scholar 

  28. G. Bikulcius, Composite Interfaces 9(4), 355 (2002).

    Article  Google Scholar 

  29. P. Grauel, J. Christoph, G. Flätgen, and K. Krischer, J. Phys. Chem. B 102, 10264 (1998).

    Article  Google Scholar 

  30. J. Christoph, R. D. Otterstedt, M. Eiswirth, et al., J. Chem. Phys. 110, 8614 (1999).

    Article  ADS  Google Scholar 

  31. O. Yu. Gorobets, Metallofizika i Noveishie Tekhnologii 29(5), 611 (2007).

    Google Scholar 

  32. F. Plenge, Diplom-Physiker, “Theory of Electrochemical Pattern Formation under Global Coupling”, Von der Fakultät II — Mathematik und Naturwissenschaften der Technischen Universität Berlin zur Erlangung des akademischen Grades Doktor der Naturwissenschaften (Berlin, 2003). (a) (b)

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © O.Yu. Gorobets, A.K. Zvezdin, O.N. Bylo, 2009, published in Kratkie Soobshcheniya po Fizike, 2009, Vol. 36, No. 3, pp. 27–35.

About this article

Cite this article

Gorobets, O.Y., Zvezdin, A.K. & Bylo, O.N. Oscillating dependence of the etched steel mass on the external magnetic field. Bull. Lebedev Phys. Inst. 36, 79–83 (2009). https://doi.org/10.3103/S106833560903004X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S106833560903004X

Keywords

Navigation