Skip to main content
Log in

Quantum well based on graphene and narrow-gap semiconductors

  • Published:
Bulletin of the Lebedev Physics Institute Aims and scope Submit manuscript

Abstract

The energy spectrum of a planar quantum well formed by two narrow-gap semiconductor strips with a graphene strip inserted between them was considered. It was shown that the gapless mode arises only in the case of inverted narrow-gap semiconductors. Taking into account the graphene specificity, the spin splitting of the energy spectrum of the asymmetric quantum well was calculated. Interface states and optical transitions were studied. It was shown that optical transitions are possible only with parity conservation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. S. Novoselov, A. K. Geim, S V. Morozov et al., Nature 438, 197 (2005).

    Article  ADS  Google Scholar 

  2. Y. Zhang, Y.-W. Tan, H. L. Stormer, and P. Kim, Nature 438, 201 (2005).

    Article  ADS  Google Scholar 

  3. L. Brey and H. A. Fertig, Phys. Rev. B 73, 235411 (2006).

  4. L. Brey and H. A. Fertig, Phys. Rev. B 75, 125434 (2007).

  5. Y.-W. Son, M. L. Cohen, S. G. Louie, Phys. Rev. Lett. 97, 216803 (2006).

    Google Scholar 

  6. R. Saito, G. Dresselhaus, and M. S. Dresselhaus, Physical Properties of Carbon Nanotubes (Imperial College Press, London, 1998).

    Google Scholar 

  7. T. Ando, J. Phys. Soc. Japan 74, 777 (2005).

    Article  MATH  ADS  Google Scholar 

  8. E. McCann and V. I. Fal’ko, J. Phys.: Condens. Matter 16, 2371 (2004).

    Article  ADS  Google Scholar 

  9. X. Wang, Y. Ouyang, X. Li, et al., Phys. Rev. Lett. 100, 206803 (2008).

  10. L. A. Ponomarenko, F. Schedin, M. I. Katsnelson, et al., Science 320, 356 (2008).

    Article  ADS  Google Scholar 

  11. Ya. M. Blanter and I. Martin, Phys. Rev. B 76, 155433 (2007).

  12. M. Y. Han, B. Özyilmaz, Y. Zhang, and P. Kim, Phys. Rev. Lett. 98, 206805 (2007).

    Google Scholar 

  13. S. Okada, Phys. Rev. B 77, 041408(R) (2008).

  14. B. A. Volkov, B. G. Idlis, and M. Sh. Usmanov, Usp. Fiz. Nauk 65, 799 (1995).

    Article  Google Scholar 

  15. J. V. Gomes and N. M. R. Peres, J. Phys.: Condens. Matter 20, 325221 (2008).

    Google Scholar 

  16. A. H. Castro Neto, F. Guinea, N. M. R. Peres, et al., Rev. Mod. Phys. (in press); http://arxiv.org/0709.1163 (2007).

  17. A. I. Akhiezer and V. B. Berestetskii, Quantum Electrodynamics (Nauka, Moscow, 1969) [in Russian].

    Google Scholar 

  18. B. G. Idlis and M. S. Usmanov, Fiz. Tekh. Poluprovodn. 26, 329 (1992).

    Google Scholar 

  19. P. V. Ratnikov and A. P. Silin, Kratkie Soobshcheniya po Fizike FIAN 35(11), 10 (2008) [Bulletin of the Lebedev Physics Institute 35, 328 (2008)].

    Google Scholar 

  20. A. P. Silin and S. V. Shubenkov, Fiz. Tverdogo Tela 40, 1345 (1998) [Phys. Solid State 40, 1223 (1998)].

    Google Scholar 

  21. B. A. Volkov and B. G. Idlis, Pis’ma JETF 42, 145 (1985).

    Google Scholar 

  22. E. A. Andryushin, S. A. Vereshchagin, and A. P. Silin, Kratkie Soobshcheniya po Fizike FIAN, No. 6, 21 (1999) [Bulletin of the Lebedev Physics Institute, No. 6, 18 (1999)].

  23. E. A. Andryushin, A. P. Silin, and S. A. Vereshchagin, Phys. Low-Dim. Struct. 3/4, 85 (2000).

    Google Scholar 

  24. L. D. Landau and E. M. Lifshitz, Quantum Mechanics (Pergamon Press, New York, 1977; Nauka, Moscow, 1989).

    Google Scholar 

  25. I. E. Tamm, Phys. Z. Sowjetunion 1, 733 (1932).

    MATH  Google Scholar 

  26. A V. Kolesnikov, R. Lipperheide, A. P. Silin, and U. Wille, Europhys. Lett. 43, 331 (1998).

    Article  ADS  Google Scholar 

  27. I. Zutić, J. Fabian, and S. Das Sarma, Rev. Mod. Phys. 76, 323 (2004).

    Article  Google Scholar 

  28. P. G. Silvestrov, K. B. Efetov, Phys. Rev. B 77, 155436 (2008).

    Google Scholar 

  29. A. V. Kolesnikov and A. P. Silin, Zh. Eksp. Teor. Fiz. 109, 2125 (1996).

    Google Scholar 

  30. A. P. Silin and S. V. Shubenkov, Fiz. Tverdogo Tela 42, 25 (2000) [Phys. Solid State 42, 24 (2000)].

    Google Scholar 

  31. P. V. Ratnikov and A. P. Silin, Kratkie Soobshcheniya po Fizike FIAN, No. 7, 17 (2006) [Bulletin of the Lebedev Physics Institute, No. 7, 14 (2006)].

Download references

Authors

Additional information

Original Russian Text © P.V. Ratnikov, A.P. Silin, 2009, published in Kratkie Soobshcheniya po Fizike, 2009, Vol. 36, No. 2, pp. 11–25.

About this article

Cite this article

Ratnikov, P.V., Silin, A.P. Quantum well based on graphene and narrow-gap semiconductors. Bull. Lebedev Phys. Inst. 36, 34–43 (2009). https://doi.org/10.3103/S106833560902002X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S106833560902002X

Keywords

Navigation