Advertisement

Bulletin of the Lebedev Physics Institute

, Volume 34, Issue 11, pp 329–333 | Cite as

Considerable increase in thermal conductivity of a polycrystalline CVD diamond upon isotope enrichment

  • A. V. Inyushkin
  • V. G. Ralchenko
  • A. N. Taldenkov
  • A. A. Artyukhov
  • A. A. Artyukhov
  • Ya. M. Kravets
  • I. P. Gnidoi
  • A. L. Ustinov
  • A. P. Bolshakov
  • A. F. Popovich
  • A. V. Savelyev
  • A. V. Khomich
  • V. Ya. Panchenko
  • V. I. Konov
Article

Abstract

We measured the temperature dependence of thermal conductivity of a polycrystalline CVD diamond with natural isotope composition and an isotope enriched (99.96% 12C) sample at temperatures from 5 to 420 K. The isotope enriched diamond demonstrates a considerable growth of thermal conductivity at temperatures above 80 K compared to the diamond with natural composition of isotopes. At room temperature the thermal conductivity reaches 24.3 W·cm−1K−1, and the isotope effect makes up not less than 34%.

Keywords

Thermal Conductivity LEBEDEV Physic Institute Isotope Enrichment Prokhorov General Physics Institute Plate Plane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. P. Zhernov and A. V. Inyushkin, Usp. Fiz. Nauk 171, 827 (2001).Google Scholar
  2. 2.
    A. P. Zhernov and A. V. Inyushkin, Usp. Fiz. Nauk 172, 573 (2002).CrossRefGoogle Scholar
  3. 3.
    T. R. Anthony, W. F. Banholzer, J. F. Fleischer, et al., Phys. Rev. B 42, 1104 (1990).CrossRefADSGoogle Scholar
  4. 4.
    L. Wei, P. K. Kuo, R. L. Thomas, et al., Phys. Rev. Lett. 70, 3764 (1993).CrossRefADSGoogle Scholar
  5. 5.
    T. R. Anthony, J. F. Fleischer, J. R. Olson, and D. G. Cahil, J. Appl. Phys. 69, 8122 (1991).CrossRefADSGoogle Scholar
  6. 6.
    G. E. Graebner, T. M. Hartnett, and R. P. Miller, Appl. Phys. Lett. 64, 2549 (1994).CrossRefADSGoogle Scholar
  7. 7.
    K. Belay, Z. Etzel, D. G. Onn, and T. R. Anthony, J. Appl. Phys. 79, 8336 (1996).CrossRefADSGoogle Scholar
  8. 8.
    A. V. Sukhadolau, E. V. Ivakin, V. G. Ralchenko, et al., Diamond Relat. Mater. 14, 589 (2005).CrossRefGoogle Scholar
  9. 9.
    S. V. Nistor, M. Stefan, V. Ralchenko, et al., J. Appl. Phys. 87, 8741 (2000).CrossRefADSGoogle Scholar
  10. 10.
    E. V. Ivakin, A. V. Sukhodolov, V. G. Ralchenko, et al., Kvant. Elektron. 32, 367 (2002).CrossRefGoogle Scholar
  11. 11.
    R. Berman, Phys. Rev. B 45, 5726 (1992).CrossRefADSGoogle Scholar
  12. 12.
    V. I. Nepsha, V. R. Grinberg, Yu. A. Klyuev, et al., Dokl. Akad. Nauk SSSR 317(1), 96 (1991).Google Scholar

Copyright information

© Allerton Press, Inc. 2007

Authors and Affiliations

  • A. V. Inyushkin
    • 1
  • V. G. Ralchenko
    • 2
  • A. N. Taldenkov
    • 1
  • A. A. Artyukhov
    • 1
  • A. A. Artyukhov
    • 1
  • Ya. M. Kravets
    • 1
  • I. P. Gnidoi
    • 1
  • A. L. Ustinov
    • 1
  • A. P. Bolshakov
    • 2
  • A. F. Popovich
    • 2
  • A. V. Savelyev
    • 2
  • A. V. Khomich
    • 3
  • V. Ya. Panchenko
    • 1
  • V. I. Konov
    • 2
  1. 1.Russian Research Center “Kurchatov Institute”MoscowRussia
  2. 2.Prokhorov General Physics InstituteRussian Academy of SciencesMoscowRussia
  3. 3.Institute of Radioengineering and ElectronicsRussian Academy of SciencesFryazinoRussia

Personalised recommendations