Advertisement

Bulletin of the Lebedev Physics Institute

, Volume 34, Issue 11, pp 321–324 | Cite as

Interaction of gold nanoparticles with bovine serum albumin

  • V. I. Krasovskii
  • I. A. Nagovitsyn
  • G. K. Chudinova
  • V. V. Savranskii
  • V. A. Karavanskii
Article

Abstract

The interaction between gold nanoparticles and bovine serum albumin (BSA) in aqueous solutions was studied. The formation of nanoparticle—BSA associates was demonstrated, which is expressed in a bathochromic shift of the surface plasmon resonance band by 5–6 nm in the absorption spectrum. The results were approximated using the Drude model for metal spheres. The thickness of the dielectric (protein) shell of the nanoparticle and its permittivity (refractive index) were calculated.

Keywords

Bovine Serum Albumin Gold Nanoparticles LEBEDEV Physic Institute Bovine Serum Albumin Solution Surface Plasmon Resonance Band 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. H. M. Hoet, I. Brüske-Hohlfeld, and O. V. Salata, J. Nanobiotechnology 2, 12 (2004).CrossRefGoogle Scholar
  2. 2.
    G. Oberdorster, E. Oberdorster, and J. Oberdorster, Environ. Health Perspect. 113(7), 823 (2005); G. Oberdorster, A. Maynard, K. Donaldson, et al., Part. Fibre Toxicol. 2, 8 (2005).CrossRefGoogle Scholar
  3. 3.
    A. White, P. Handler, E. L. Smith, R. L. Hill, and I. R. Lehman, Principles of Biochemistry (McGraw-Hill, New York, 1978).Google Scholar
  4. 4.
    D. Mehta, J. Bhattacharya, M. A. Matthay, and A. B. Malik, Cell Mol. Physiol. 287, L1081 (2004); K. Heckel, R. Kiefmann, M. Dorger, et al., Am. J. Physiol. Lung Cell Mol. Physiol. 287, L867 (2004).CrossRefGoogle Scholar
  5. 5.
    J. Homola, S. S. Yee, and G. Gauglitz, Sensor and Actuators B 54, 3 (1999); M. M. Malmquist, Biochem. Soc. Trans. 27, 335 (1999).CrossRefGoogle Scholar
  6. 6.
    Y. Long, L. Nie, J. Chen, and S. Yao, J. Colloid Interface Sci. 263(1), 106 (2003); S. Liu, Z. Yang, Z. Liu, and L. Kong, Anal. Biochem. 353(1), 108 (2006).CrossRefGoogle Scholar
  7. 7.
    D. Pissuwan, S. M. Valenzuela, and M. B. Cortie, Trends Biotechnol. 24(2), 62 (2006).CrossRefGoogle Scholar
  8. 8.
    S. K. Mandal, R. K. Roy, and A. K. Pal, J. Phys. D: Applied Phys. 35, 2196 (2002).ADSCrossRefGoogle Scholar
  9. 9.
    P. Englebienne, A. Hoonacker, and M. Verhas, Spectroscopy 17, 255 (2003).Google Scholar
  10. 10.
    A. Tsargorodskaya, A. V. Nabok, and A. K. Ray, Nanotechnology 15, 703 (2004).CrossRefGoogle Scholar
  11. 11.
    I. A. Nagovitsyn and G. K. Chudinova, Dokl. Akad. Nauk 382(2), 267 (2002).Google Scholar
  12. 12.
    I. A. Nagovitsyn, G. K. Chudinova, V. V. Savranskii, and G. G. Komissarov, Kratk. Soobshch. po Fizike FIAN, No. 11, 19 (2003) [Bulletin of the Lebedev Phys. Inst., No. 11, 15 (2003)].Google Scholar
  13. 13.
    I. A. Nagovitsyn, G. K. Chudinova, V. V. Savranskii, and G. G. Komissarov, Biofizika, 2007 [Biophysics] (in press).Google Scholar

Copyright information

© Allerton Press, Inc. 2007

Authors and Affiliations

  • V. I. Krasovskii
    • 1
  • I. A. Nagovitsyn
    • 1
  • G. K. Chudinova
    • 1
  • V. V. Savranskii
    • 1
  • V. A. Karavanskii
    • 1
  1. 1.Prokhorov General Physics InstituteRussian Academy of SciencesMoscowRussia

Personalised recommendations