Skip to main content
Log in

Theoretical analysis of defect formation in GaN:Mg crystals

  • Published:
Bulletin of the Lebedev Physics Institute Aims and scope Submit manuscript

Abstract

The method of quasi-chemical reactions was used to construct the diagrams of point-defect equilibrium in GaN and GaN:Mg at 1400 K. According to these diagrams, it is impossible to obtain GaN with hole conductivity in equilibrium conditions. The nitrogen vacancies are shown to be the main acceptor-compensating centers in GaN.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Nakamura and G. Fasol, The Blue Laser Diode (Springer, Berlin, 1997).

    Google Scholar 

  2. M. Ilegems and H. C. Montgomery, J. Phys. Chem. Solids 34, 885 (1973).

    Article  Google Scholar 

  3. I. Akasaki, H. Amano, N. Sawaki, et al., Semicond. Technol. 19, 295 (1986).

    Google Scholar 

  4. R. J. Molnar, T. Lei, and T. D. Moustakas, Appl. Phys. Lett. 62, 72 (1993).

    Article  ADS  Google Scholar 

  5. S. Porowski, J. Cryst. Growth. 189–190, 153 (1998).

    Article  Google Scholar 

  6. S. Krukowski, Cryst. Res. Technol. 34, 785 (1998).

    Article  Google Scholar 

  7. I. Akasaki, H. Amano, M. Kito, and K. Hiramatsu, J. Luminescence 48–49, 666 (1991).

    Google Scholar 

  8. U. Kaufmann, P. Schlotter, H. Obloh, et al., Phys. Rev. B 62, 10867 (2000).

  9. B. Monemar, O. Lagerstedt, and H. P. Gislason, J. Appl. Phys. 51, 625 (1980).

    Article  ADS  Google Scholar 

  10. C. G. Van de Walle and J. Neugebauer, J. Appl. Phys. 95, 3851 (2004).

    Article  ADS  Google Scholar 

  11. W. J. Moore, J. A., Jr. Freitas, S. K. Lee, et al., Phys. Rev. B 65, 081201 (2002).

  12. D. C. Look, G. C. Farlow, P. J. Drevinsky, et al., Appl. Phys. Lett. 83, 3525 (2003).

    Article  ADS  Google Scholar 

  13. O. Yang, H. Feick, and E. R. Weber, Appl. Phys. Lett. 82, 3002 (2003).

    Article  ADS  Google Scholar 

  14. P. Boguslawski, E. L. Briggs, and J. Bernholc, Phys. Rev. B 51, 17255 (1995).

    Google Scholar 

  15. D. W. Jenlins, J. D. Dow, and M.-H. Tsai, J. Appl. Phys. 72, 4130 (1992).

    Article  ADS  Google Scholar 

  16. J. Neugebauer and C. G. Van de Walle, Phys. Rev. B 50, 8067 (1994).

    Article  ADS  Google Scholar 

  17. L. E. Ramos, J. Furthmüller, F. Bechstedt, et al., J. Phys.: Condens. Matter. 14, 2577 (2002).

    ADS  Google Scholar 

  18. C. H. Park and D. J. Chadi, Phys. Rev. B 55, 12995 (1997).

    Google Scholar 

  19. T. Mattila and R. M. Niminen, Phys. Rev. B 55, 9571 (1997).

    Article  ADS  Google Scholar 

  20. I. Grzegory, N. E. Christensen, and A. Svane, Phys. Rev. B 66, 075210 (2002).

    Google Scholar 

  21. J. I. Pankove, J. Luminescence 7, 114 (1973).

    Article  Google Scholar 

  22. R. Y. Korotkov, M. A. Reshchikov, and B. W. Wessels, J. Phys. B 325, 1 (2003).

    Article  Google Scholar 

  23. M. A. Reshchikov, F. Shahedipour, R. Y. Korotkov, et al., J. Phys. B 273–274, 105 (1999).

    Google Scholar 

  24. J. Neugebauer and C. G. Van de Walle, Appl. Phys. Lett. 69, 503 (1996).

    Article  ADS  Google Scholar 

  25. K. Saarinen, P. Seppälä, J. Oila, et al., Appl. Phys. Lett. 73, 3253 (1998).

    Article  ADS  Google Scholar 

  26. K. Saarinen, J. Nissilä, J. Oila, et al., J. Phys. B 273–274, 33 (1999).

    Google Scholar 

  27. D. M. Hofmann, D. Kovalev, G. Steude, et al., Phys. Rev. B 52, 16702 (1995).

  28. E. R. Glaser, T. A. Kennedy, K. Doverspike, et al., Phys. Rev. B 51, 13326 (1995).

    Google Scholar 

  29. J. Northrup and S. B. Zhang, Phys. Rev. B 50, 4962 (1994).

    Article  ADS  Google Scholar 

  30. U. Kaufmann, M. Kunzer, H. Obloh, et al., Phys. Rev. B 59, 5561 (1999).

    Article  ADS  Google Scholar 

  31. J. A. Chisholm, D. W. Lewis, and P. D. Bristowe, J. Phys.: Condens. Matter. 11, L235 (1999).

    Article  ADS  Google Scholar 

  32. B. Monemar, Phys. Rev. B 10, 676 (1974).

    Article  ADS  Google Scholar 

  33. F. A. Kroger, The Chemistry of Imperfect Crystals (Wiley, New York, 1964; Mir, Moscow, 1969).

    Google Scholar 

  34. A. M. Gurvich, Introduction to Physical Chemistry of Crystalline Phosphors (Vyssh. Shkola, Moscow, 1982) [in Russian].

    Google Scholar 

  35. N. K. Morozova and V.A. Nikitenko, Izv. Akad. Nauk. SSSR. Neorgan. Mater. 9, 1555 (1973).

    Google Scholar 

  36. A. K. Ray and F. A. Kröger, J. Electrochem. Sol. 125, 1348 (1978).

    Article  Google Scholar 

  37. A. N. Georgobiani, M. B. Kotlyarevsky, and V.N. Mikhalenko, Trudy FIAN 138, 79 (1983).

    Google Scholar 

  38. A. N. Georgobiani, M. B. Kotlyarevsky, and I. V. Rogozin, Inorganic Materials 40 (Suppl. 1), S1 (2004).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © I.V. Rogozin, A.N. Georgobiani, 2007, published in Kratkie Soobshcheniya po Fizike, 2007, Vol. 34, No. 2, pp. 3–13.

About this article

Cite this article

Rogozin, I.V., Georgobiani, A.N. Theoretical analysis of defect formation in GaN:Mg crystals. Bull. Lebedev Phys. Inst. 34, 35–41 (2007). https://doi.org/10.3103/S1068335607020017

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068335607020017

Keywords

Navigation