Skip to main content

Microstructure and Mechanical Effects of Co–Ti Powder Particles on Cu Matrix Composites

Abstract

Powder metallurgy was used in this study. High purity cobalt and titanium powders were added to copper powders at a ratio of 5–10–15 wt %. The reinforcing powders added to the copper powders were mixed for about 6 hours in a Turbula device. Then, the powders were compressed by applying 600 MPa using a hydraulic press. The samples were sintered at 1000°C for 30 min. After sintering, density measurements, and microstructure and mechanical tests of the samples were done. Scanning electron microscopy, energy dispersive spectroscopy, and X-ray diffraction analyses were performed in the microstructure characterization. Tensile and wear analyses were performed for mechanical experiments. The tensile test results were determined by applying certain loads to the samples. The tensile strength of the 5 wt % Co–Ti reinforced sample was the highest, with an average of 118.65 MPa, and the ductility increased in parallel. Weight loss, friction coefficient change, and wear diameter image results were obtained from the wear test. The lowest weight loss was observed in the composite containing 5 wt % Co–Ti and this value was determined as 0.0191 g. The increase in the reinforcement rate contributed positively to tensile and abrasion resistance.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.

REFERENCES

  1. 1

    Wang, H., Fang, Z.Z., and Sun, P., A critical review of mechanical properties of powder metallurgy titanium, Int. J. Powder Metall., 2012, vol. 46, no. 5, pp. 45–57.

    CAS  Google Scholar 

  2. 2

    Kirik, I., Ozdemir, N., and Caligulu, U., Effect of particle size and volume fraction of the reinforcement on the microstructure and mechanical properties of friction welded MMC to AA 6061 aluminum alloy, Kovove Mater., 2013, vol. 51, pp. 221–227.

    CAS  Google Scholar 

  3. 3

    Yalcin, B. and Varol, R., Production of Ti–6Al–4V and Ti–5Al–2.5Fe alloys via powder metallurgy method and investigation of its some mechanical properties, J. Polytech., 2008, vol. 11, no. 3, pp. 235–241.

    Google Scholar 

  4. 4

    Zheng, H.X., Mentz, J., Bram, M., Buchkremer, H.P., and Stöver, D., Powder metallurgical production of TiNiNb and TiNiCu shape memory alloys by combination of pre-alloyed and elemental powders, J. Alloys Compd., 2008, vol. 463, nos. 1–2, pp. 250–256.

    Article  CAS  Google Scholar 

  5. 5

    Uzun, M. and Usca, U.A., Effect of Cr particulate reinforcements in different ratios on wear performance and mechanical properties of Cu matrix composites, J. Braz. Soc. Mech. Sci. Eng., 2018, vol. 40, no. 4, pp. 2–9.

    Article  CAS  Google Scholar 

  6. 6

    Ozgun, O. and Akbulut, O.F., The effect of element additions on the microstructure and the mechanical properties of cobalt based superalloys produced via powder metallurgy technique, Sakarya Univ. J. Sci., 2017, vol. 21, no. 2, pp. 223–231.

    Google Scholar 

  7. 7

    Uygur, I., The effect of mangan addition to Fe-Cu-C steels on mechanical properties, J. Fac. Eng. Archit. Gazi Univ., 2007, vol. 22, no. 3, pp. 325–330.

    Google Scholar 

  8. 8

    Jiang, X., et al., Microstructures and mechanical properties of Cu/Ti3SiC2/C/graphene nanocomposites prepared by vacuum hot-pressing sintering and hot isostatic pressing, Composites, Part B, 2018, vol. 141, pp. 203–213.

    Article  CAS  Google Scholar 

  9. 9

    Schubert, T., Trindade, B., Weißgärber, T., and Kieback, B., Interfacial design of Cu-based composites prepared by powder metallurgy for heat sink applications, Mater. Sci. Eng., A, 2008, vol. 475, nos. 1–2, pp. 39–44.

    Article  CAS  Google Scholar 

  10. 10

    Pina, V.G., Amigó, V., and Muñoz, A.I., Microstructural, electrochemical and tribo-electrochemical characterization of titanium-copper biomedical alloys, Corros. Sci., 2016, vol. 109, pp. 115–125.

    Article  CAS  Google Scholar 

  11. 11

    Lu, Y., et al., Effect of Cu powder addition on thermoelectric properties of Cu/TiO2 – x composites, Ceram. Int., 2013, vol. 39, pp. 6689–6694.

    Article  CAS  Google Scholar 

  12. 12

    Chundru, V.R., Koona, R., and Pujari, S.R., Surface Modification of Ti6Al4V alloy using EDMed electrode made with nano- and micron-sized TiC/Cu powder particles, Arabian J. Sci. Eng., 2019, vol. 44, no. 2, pp. 1425–1436.

    Article  CAS  Google Scholar 

  13. 13

    Uzun, M., Munis, M.M., and Usca, U.A., Different ratios CrC particle-reinforced Cu matrix composite materials and investigation of wear performance, Int. J. Eng. Res. Appl., 2018, vol. 8, no. 7, pp. 01–07.

  14. 14

    Nazeer, F., Ma, Z., Gao, L., Wang, F., Khan, M.A., and Malik, A., Thermal and mechanical properties of copper-graphite and copper-reduced graphene oxide composites, Composites, Part B, 2019, vol. 163, pp. 77–85.

    Article  CAS  Google Scholar 

  15. 15

    Li, W., Jiang, X., Gao, J., Li, Y., Wang, H., and Zhu, D., Friction and wear properties of nano-carbon reinforced Cu/Ti3SiC2/C nanocomposites, Mater. Test., 2017, vol. 60, no. 9, pp. 809–817.

    Google Scholar 

  16. 16

    Uzun, M., Munis, M.M., and Usca, U.A., Investigation of microstructure and hardness properties of Cu matrix composite materials produced by powder metallurgy using CrC particle reinforcements at different ratios, Sakarya Univ. J. Sci., 2018, vol. 22, no. 2, pp. 495–501.

    Google Scholar 

  17. 17

    Moharana, B.R., Sahu, S.K., Sahoo, S.K., and Bathe, R., Experimental investigation on mechanical and microstructural properties of AISI 304 to Cu joints by CO2 laser, Eng. Sci. Technol., Int. J., 2016, vol. 19, no. 2, pp. 684–690.

    Google Scholar 

  18. 18

    Barekat, M., Razavi, R.S., and Ghasemi, A., Nd:YAG laser cladding of Co–Cr–Mo alloy on γ-TiAl substrate, Opt. Laser Technol., 2016, vol. 80, pp. 145–152.

    Article  CAS  Google Scholar 

  19. 19

    Ozgun, O. and Dinler, I., Production and characterization of WC-reinforced Co-based superalloy matrix composites, Metall. Mater. Trans. A, 2018, vol. 49, no. 7, pp. 2977–2989.

    Article  CAS  Google Scholar 

  20. 20

    Xia, Y., Yu, P., Schaffer, G.B., and Qian, M., Cobalt-doped Ti–48Al–2Cr–2Nb alloy fabricated by cold compaction and pressureless sintering, Mater. Sci. Eng., A, 2013, vol. 574, pp. 176–185.

    Article  CAS  Google Scholar 

  21. 21

    Baco-Carles, V., Arnal, A., Poquillon, D., and Tailhades, P., Correlation between the morphology of cobalt oxalate precursors and the microstructure of metal cobalt powders and compacts, Powder Technol., 2008, vol. 185, no. 3, pp. 231–238.

    Article  CAS  Google Scholar 

  22. 22

    Cabrol, E., Boher, C., Vidal, V., Rezaï-Aria, F., and Touratier, F., A correlation between tribological behavior and crystal structure of cobalt-based hardfacings, Wear, 2019, vols. 426–427, pp. 996–1007.

    Article  CAS  Google Scholar 

  23. 23

    Hao, Y.L., Li, S.J., and Yang, R., Biomedical titanium alloys and their additive manufacturing, Rare Met., 2016, vol. 35, pp. 661–671.

    Article  CAS  Google Scholar 

  24. 24

    Qu, W.T., et al., Tribological behaviour of biomedical Ti–Zr-based shape memory alloys, Rare Met., 2017, vol. 36, pp. 478–484.

    Article  CAS  Google Scholar 

  25. 25

    Fang, Z.Z., et al., Powder metallurgy of titanium past, present, and future, Int. Mater. Rev., 2018, vol. 63, pp. 407–459.

    Article  CAS  Google Scholar 

  26. 26

    Dutta, B. and Froes, F.H., The Additive Manufacturing (AM) of titanium alloys, Met. Powder Rep., 2017, vol. 72, no. 2, pp. 96–106.

    Article  Google Scholar 

  27. 27

    Hayat, M.D., Singh, H., He, Z., and Cao, P., Titanium metal matrix composites: An overview, Composites, Part A, 2019, vol. 121, pp. 418–438.

    Article  CAS  Google Scholar 

  28. 28

    Dalai, R.P., Das, S., and Das, K., Development of TiC reinforced austenitic manganese steel, Can. Metall. Q., 2014, vol. 53, no. 3, pp. 317–325.

    Article  CAS  Google Scholar 

  29. 29

    Srivastava, A.K. and Das, K., Microstructural and mechanical characterization of in situ TiC and (Ti,W)C-reinforced high manganese austenitic steel matrix composites, Mater. Sci. Eng., A, 2009, vol. 516, pp. 1–6.

    Article  CAS  Google Scholar 

  30. 30

    Yu-nan Tian, Dou, Z., Niu, L., et al., Effects of titanium nitride particles on copper matrix-graphite composite properties, Russ. J. Non-Ferrous Met., 2020, vol. 61, pp. 387–395.

    Article  Google Scholar 

  31. 31

    Gongjun, C., Han, J., and Wu, G., High-temperature wear behavior of self-lubricating Co matrix alloys prepared by P/M, Wear, 2016, vol. 346–347.

  32. 32

    Thakur, S.K. and Gupta, M., Improving mechanical performance of Al by using Ti as reinforcement, Composites, Part A, 2007, vol. 38, no. 3, pp. 1010–1018.

    Article  CAS  Google Scholar 

  33. 33

    Marych, M.V., Bagliuk, G.A., Mamonova, A.A., and Gripachevskii, A.N., The influence of synthesis conditions on the phase composition, structure, and properties of the high-entropy Ti–Cr–Fe–Ni–Cu alloy, Powder Metall. Met. Ceram., 2019, vol. 57, pp. 533–541.

    Article  CAS  Google Scholar 

  34. 34

    Skorokhod, V.V., Getman, O.I., Panichkina, V.V., Radchenko, P.Ya., Bykov, O.I., and Samelyuk, A.V., Mechanism for improving the mechanical properties of sintered iron–copper composites alloyed with molybdenum, Powder Metall. Met. Ceram., 2017, vol. 56, pp. 370–378.

    Article  CAS  Google Scholar 

  35. 35

    Ozgun, O. and Gulsoy, H.O., Investigation of microstructure and mechanical properties of FeCo alloys produced through powder injection molding method, Turk. J. Nat. Sci., 2020, vol. 9, no. 1, pp. 6–11.

    Google Scholar 

  36. 36

    Islak, S., Çelik, E., Kir, D., et al., Characterization of hot pressed CuAl-TiC composites with different TiC grain sizes, Russ. J. Non-Ferrous Met., 2016, vol. 57, pp. 374–380.

    Article  Google Scholar 

  37. 37

    Savitskii, A.P. and Kwon, Y.S., Solid state sintering of interacting two-component mixtures, Met. Powder Rep., 2002, vol. 57, no. 6, p. 62.

    Article  Google Scholar 

  38. 38

    Celik, Y.H. and Secilmis, K., Investigation of wear behaviors of Al matrix composites reinforced with different B4C rate produced by powder metallurgy method, Adv. Powder Technol., 2017, vol. 28, no. 9, pp. 2218–2224.

    Article  CAS  Google Scholar 

  39. 39

    Dos Santos, D.T., Salemi, A., Cristofolini, I., and Molinari, A., The tensile properties of a Powder Metallurgy Cu–Mo–Ni diffusion bonded steel sintered at different temperatures, Mater. Sci. Eng., A, 2019, vol. 759, pp. 715–724.

    Article  CAS  Google Scholar 

  40. 40

    Chowdhury, M.A., Nuruzzaman, D.M., Roy, B.K., Samad, S., Sarker, R., and Rezwan, A.H.M., Experimental investigation of friction coefficient and wear rate of composite materials sliding against smooth and rough mild steel counterfaces, Tribol. Ind., 2013, vol. 35, no. 4, pp. 286–296.

    Google Scholar 

  41. 41

    Baradeswaran, A. and Perumal, A.E., Influence of B4C on the tribological and mechanical properties of Al 7075-B4C composites, Composites, Part B, 2013, vol. 54, pp. 146–152.

    Article  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Emine Sap.

Ethics declarations

The authors state that they have no conflict of interest.

About this article

Verify currency and authenticity via CrossMark

Cite this article

Emine Sap Microstructure and Mechanical Effects of Co–Ti Powder Particles on Cu Matrix Composites. Russ. J. Non-ferrous Metals 62, 107–118 (2021). https://doi.org/10.3103/S1067821221010077

Download citation

Keywords:

  • powder metallurgy
  • copper
  • cobalt
  • titanium
  • composite materials
  • mechanical properties