Skip to main content
Log in

Synthesis and Properties of Composites Based on Zirconium and Chromium Borides

  • REFRACTORY, CERAMIC, AND COMPOSITE MATERIALS
  • Published:
Russian Journal of Non-Ferrous Metals Aims and scope Submit manuscript

Abstract

Experimental data on the fabrication of composites based on the ZrB2–CrB system by SHS compaction are presented. Adiabatic combustion temperatures of the Zr–Cr–B system and compositions of equilibrium synthesis products are calculated using the thermodynamic data, and optimal fabrication conditions for SHS composite production are determined. It is shown that the equilibrium synthesis products are ZrB2 and CrB refractory compounds. They provide the high thermodynamic stability of SHS composites, which are applied as a dispersed phase (ZrB2) and ceramic binder (CrB). The adiabatic combustion temperature decreases from 3320 to 2350 K with an increase in the binder content from 25 to 64 wt %. A hard dispersed phase (ZrB2) and molten binder (CrB) are formed under these conditions. It is revealed that the formation of a molten binder provides the formation of SHS composites with residual porosity lower than 1%. The influence of the composition of the reaction mixture on the phase composition, microstructure, and physicomechanical characteristics of SHS composites are investigated. It is established that the residual porosity at the CrB content in the limits of 30–50 wt % is <1%. Herewith, the Vickers hardness varies in a range of 31.3–42.6 GPa, while the ultimate bending strength varies in a range of 480–610 MPa. It is shown that physicomechanical characteristics depend on the residual porosity of SHS composites. Cutting plates are fabricated from the ZrB2–30CrB SHS composite and testing is performed with the treatment of high-hardness chilled steels. The results evidence that ceramic cutters made of the ZrB2–30CrB composite possess high wear resistance when treating ShKh15 bearing steel with hardness of 61–65 HRC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Monteverde, F., Bellosi, A., and Guicciardi, S., Processing and properties of zirconium diboride-based composites, J. Eur. Ceram. Soc., 2002, vol. 22, no. 3, pp. 279–288. https://doi.org/10.1016/S0955-2219(01)00284-9

    Article  Google Scholar 

  2. Chamberlain, A.L., Fahrenholtz, W.G., Hilmas, G.E., and Ellerby, D.T., High strength zirconium diboride-based ceramics, J. Am. Ceram. Soc., 2004, vol. 87, no. 6, pp. 1170–1172. https://doi.org/10.1111/j.1551-2916.2004.01170.x

    Article  Google Scholar 

  3. Monteverde, F., Guicciardi, S., and Bellosi, A., Advances in microstructure and mechanical properties of zirconium diboride based ceramics, Mater. Sci. Eng. A, 2003, vol. 346, nos. 1–2, pp. 310–319. https://doi.org/10.1016/S0921-5093(02)00520-8

  4. Rapp, B., Materials for extreme environments, Mater. Today, 2006, vol. 9, no. 5, p. 6. https://doi.org/10.1016/S1369-7021(06)71471-7

    Google Scholar 

  5. Fahrenholtz, W.G., Hilmas, G.E., Talmy, I.G., and Zaykoski, J.A., Refractory diborides of zirconium and hafnium, J. Am. Ceram. Soc., 2007, vol. 90, no. 5, pp. 1347–1364. https://doi.org/10.1111/j.1551-2916.2007.01583.x.

    Article  Google Scholar 

  6. Murthy, T.S.R.Ch., Sonber, J.K., Subramanian, C., Fotedar, R.K., Gonal, M.R., and Suri, A.K., Effect of CrB2 addition on densification, properties and oxidation resistance of TiB2, Int. J. Refr. Met. Hard Mat., 2009, vol. 27, no. 6, pp. 976–984. https://doi.org/10.1016/j.ijrmhm.2009.06.004.

    Article  Google Scholar 

  7. Thompson, M.J., Fahrenholtz, W.G., and Hilmas, G.E., Elevated temperature thermal properties of ZrB2 with carbon additions, J. Am. Ceram. Soc., 2012, vol. 95, no. 3, pp. 1077–1085. https://doi.org/10.1111/j.1551-2916.2011.05034.x.

    Google Scholar 

  8. Zimmermann, J.W., Hilmas, G.E., Fahrenholtz, W.G., Dinwiddie, R.B., Porter, W.D., and Wang, H., Thermophysical properties of ZrB2 and ZrB2–SiC ceramics, J. Am. Ceram. Soc., 2008, vol. 91, no. 5, pp. 1405–1411. https://doi.org/10.1111/j.1551-2916.2008.02268.x

    Article  Google Scholar 

  9. Lonergan, J.M., Fahrenholtz, W.G., and Hilmas, G.E., Zirconium diboride with high thermal conductivity, J. Am. Ceram. Soc., 2014, vol. 97, no. 6, pp. 1689–1691. https://doi.org/10.1111/jace.12950.

    Article  Google Scholar 

  10. McClane, D.L., Fahrenholtz, W.G., and Hilmas, G.E., Thermal properties of (Zr, TM)B2 solid solutions with TM = Hf, Nb, W, Ti, and Y., J. Am. Ceram. Soc., 2014, vol. 97, no. 5, pp. 1552–1558. https://doi.org/10.1111/jace.12893

    Article  Google Scholar 

  11. Springer Handbook of Condensed Matter and Materials Data. 3.2. Ceramics, Martienssen, W. and Warlimont, H., Eds., Berlin–Heidelberg: Springer, 2005, pp. 456–458. https://doi.org/10.1007/3-540-30437-1

  12. Han, L., Wang, S., Zhu, J., Han, S., Li, W., Chen, B., Wang, X., Yu, X., Liu, B., Zhang, R., Long, Y., Cheng, J., Zhang, J., Zhao, Y., and Jin, C., Hardness, elastic, and electronic properties of chromium monoboride, Appl. Phys. Lett., 2016, vol. 106, no. 22, pp. 1–4. https://doi.org/10.1063/1.4922147.

    Google Scholar 

  13. Deng, H.L., Li, G.L., Song, Y.J., and Xiao, S.R., Microstructure and abrasion resistance mechanism of CrB particles reinforced MMC coating, Key Eng. Mater., 2008, vols. 373–374, pp. 35–38. https://doi.org/10.4028/www.scientific.net/KEM.373-374.35

  14. Jordan, L.R., Betts, A.J., Dahm, K.L., Dearnley, P.A., and Wright, G.A., Corrosion an passivation mechanism of chromium diboride coatings on stainless steel, Corros. Sci., 2005, vol. 47, no. 5, pp. 1085–1096. https://doi.org/10.1016/j.corsci.2003.10.018.

    Article  Google Scholar 

  15. Samsonov, G.V., Serebryakova, T.I., and Neronov, V.A., Boridy (Borides), Moscow: Atomizdat, 1975.

    Google Scholar 

  16. Shcherbakov, V.A., Gryadunov, A.N., Sachkova, N.V., and Samokhin, A.V., SHS compaction of ceramic composites based on titanium and chromium borides, Pis’ma Mater., 2015, vol. 5, no. 1, pp. 20–23. https://doi.org/10.22226/2410-3535-2015-1-20-23.

    Google Scholar 

  17. Pityulin, A.N., Force compaction in SHS processes, in: Samorasprostranyayuchshiisya vysokotemperaturnyi sintez: teoriya i praktika (Self-Propagating High-Temperature Synthesis: Theory and Practice), Chernogolovka: Territoriya, 2001, pp. 333–353.

  18. Scherbakov, V.A., Gryadunov, A.N., and Alymov, M.I., Synthesis and characteristics of B4C–TiB2 composite, Adv. Mater. Technol., 2016, no. 4, pp. 16–21. https://doi.org/10.17277/amt.2016.04.pp.016-021.

  19. GOST (State Standard) R ISO 6507-1 2007: Metals and alloys. Measurement of Vickers hardness, 2007.

  20. GOST 25281–82: Powder metallurgy. Method for determining the density of molds (with the change no. 1), 1982.

  21. Shiryaev, A.A., Thermodynamic of SHS: Modern approach, Int. J. SHS, 1995, vol. 4, no. 4, pp. 351–362.

    Google Scholar 

  22. Mamyan, S.S., Shiryaev, A.A., and Merzhanov, A.G., Thermodynamic studies of the possibility of forming inorganic materials by SHS with a reduction stage, J. Eng. Phys. Thermophys., 1993, vol. 65, no. 4, pp. 974–980. https://doi.org/10.1007/BF00862769.

    Article  Google Scholar 

  23. Kiparisov, S.S. and Libenson, G.A., Poroshkovaya metallurgiya (Powder Metallurgy), Moscow: Metallurgiya, 1980.

  24. GOST 801–78: Bearing steel. Technical Specifications, 1978.

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. A. Shcherbakov, A. N. Gryadunov or Yu. N. Barinov.

Additional information

Translated by N. Korovin

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shcherbakov, V.A., Gryadunov, A.N., Barinov, Y.N. et al. Synthesis and Properties of Composites Based on Zirconium and Chromium Borides. Russ. J. Non-ferrous Metals 60, 179–185 (2019). https://doi.org/10.3103/S1067821219020135

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1067821219020135

Keywords:

Navigation