Skip to main content
Log in

Regularities of Metallurgical Reactions of Ti1 –n\({\text{Me}}_{n}^{{\text{V}}}\)C0.5N0.5 Carbonitrides with the Ni–Mo Melt

  • REFRACTORY, CERAMIC, AND COMPOSITE MATERIALS
  • Published:
Russian Journal of Non-Ferrous Metals Aims and scope Submit manuscript

Abstract

The influence of alloying TiC0.5N0.5 carbonitride by transition metals of Group V (V, Nb, and Ta) on the contact interaction mechanism with the Ni–25%Mo melt (T = 1450°C, τ = 1 h, rarefaction is 5 × 10–2 Pa) is systematically studied by X-ray spectral microanalysis and scanning electron microscopy for the first time. It is established that the dissolution of single-type Ti1 –n\({\text{Me}}_{n}^{{\text{V}}}\)C0.5N0.5 carbonitrides (n = 0.05) is an incongruent process (alloying metal and carbon preferentially transfer into the melt), and the relative rate and degree of incongruence of the dissolution process of carbonitrides in a series of alloying metals V–Nb–Ta vary nonmonotonically. An explanation for the discovered effects is proposed. The causal-effect relation between the initial composition of Ti0.95\({\text{Me}}_{{0.05}}^{{\text{V}}}\)C0.5N0.5 carbonitride (the grade of the alloying metal) and composition of the Ti1 – – mMon\({\text{Me}}_{m}^{{\text{V}}}\)Cx K-phase that is precipitated from the melt upon system cooling is analyzed. It is shown that the factor determining the composition of the forming K-phase is the ΔT factor (the degree of exceeding crystallization temperatures of carbide eutectics Ni/MeVC over the crystallization temperature of the Ni/Mo2C eutectic that is the lowest melting in these systems). The conclusion is argued that the interrelation between the initial carbonitride composition and the composition of the K-phase is a consequence of a microinhomogeneous structure of metallic alloys. It is shown that this interrelation is rather common and manifests itself in all studied systems irrespective of the type of alloying Group V metal and presence or absence of molybdenum in the melt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Clark, E.B. and Roebuck, B., Extending the application areas for titanium carbonitride cermets, Int. J. Refract. Metal. Hard Mater., 1992, vol. 11, pp. 23–33.

    Article  Google Scholar 

  2. Ettmayer, P., Kolaska, H., Lengauer, W., and Dreyer, K., Ti(C, N) cermets—metallurgy and Properties, Int. J. Refract. Metal. Hard Mater., 1995, vol. 13, pp. 343–351.

    Article  Google Scholar 

  3. Zhang, S., Material development of titanium carbonitride-based cermets for machining application, Key Eng. Mater., 1998, vol. 138–140, pp. 521–543.

    Google Scholar 

  4. Xiao, J.H., Xiong, W.H., Lin, S.J., Qu, J., and Zhou, M., Review on the preparation and application of Ti(C,N)-based cermet composite, Mater. Rev., 2010, vol. 24, pp. 21–27.

    Google Scholar 

  5. Peng, Y., Miao, H., and Peng, Z., Development of TiCN-based cermets: Mechanical properties and wear mechanism, Int. J. Refract. Met. Hard Mater., 2013, vol. 39, pp. 78–89.

    Article  Google Scholar 

  6. Kang, S., Cermets. in: Comprehensive Hard Materials, Sarin, V.K., Ed., UK: Elsevier, 2014, vol. 1, pp. 139–181.

    Google Scholar 

  7. Rajabi, A., Ghazali, M.J., and Daud, A.R., Chemical composition, microstructure and sintering temperature modifications on mechanical properties of TiC-based cermets: A review, J. Mater. Design, 2015, vol. 67, pp. 95–106.

    Article  Google Scholar 

  8. Zhilyaev, V.A., Patrakov, E.I., and Shveikin, G.P., Current status and potential for development of W-free hard alloys, in: Proc. 2nd Int. Conf. Sci. Hard Mater., (Rhodes, Greece, 1984), Bristol, Boston: Hilger, 1986, pp. 1063–1073.

  9. Lindahl, P., Mainer, T., and Jonsson, H., Microstructure and mechanical properties of a (Ti, W, Ta, Mo) (C, N)–(Co, Ni) type cermet, Int. J. Refract. Met. Hard Mater., 1993, vol. 4, pp. 187–204.

    Google Scholar 

  10. Zhang, S., Qin, C.D., and Lim, L.C., Solid solution extent of WC and TaC in Ti(C, N) as revealed by lattice parameter increase, Int. J. Refract. Met. Hard Mater., 1993–1994, vol. 12, pp. 329–333.

    Article  Google Scholar 

  11. Park, S. and Kang, S., Toughened ultrafine (Ti, W)(CN)–Ni cermets, Scripta Mater., 2005, vol. 53, pp. 129–133.

    Article  Google Scholar 

  12. Kim, S.W., Ahn, S., and Kang, S., Effect of the complete solidsolution phase on the microstructure of Ti(CN)-based cermets, Int. J. Refract. Met. Hard Mater., 2009, vol. 27, pp. 224–228.

    Article  Google Scholar 

  13. Liu, Y., Jin, Y., Yu, H., and Ye, J., Ultrafine (Ti, M)(C, N)-based cermets with optimal mechanical properties, Int. J. Refract. Met. Hard Mater., 2011, vol. 29, pp. 104–107.

    Article  Google Scholar 

  14. Chen, X., Xiong, W., Yang, Q., Yao, Z., and Huang, Y., Microstructure and mechanical properties of (Ti, W, Ta)C-xMo–Ni cermets, Int. J. Refract. Met. Hard Mater., 2012, vol. 31, pp. 56–61.

    Article  Google Scholar 

  15. Chicardi, E., Torres, Y., Hvizdos, P., and Gotor, F.J., Effect of tantalum content on the microstructure and mechanical behavior of cermets based on (TixTa1 – x)(C0.5N0.5) solid solutions, Mater. Design, 2014, vol. 53, pp. 435–444.

    Article  Google Scholar 

  16. Zhilyaev, V.A., Solid-solution nature of refractory interstitial phases. Part I. Physical substantiation, Materialovedenie, 2012, no. 3, pp. 3–9.

  17. Zhilyaev, V.A., Solid-solution nature of refractory interstitial phases. Part II. Physical substantiation, Materialovedenie, 2012, no. 4, pp. 3–12.

  18. Zhilyaev, V.A., Interrelation of the composition, structure and properties of refractory interstitial phases, in: G.V. Samsonovuchenyi, uchitel’, drug (G.V. Samsonov—a Scientist, Teacher, and Friend), Kislyi, P.S., Ed., Kiev: Naukova Dumka, 2012, pp. 167–180.

  19. Zhilyaev, V.A. and Patrakov, E.I., Influence of alloying of TiC0.5N0.5 carbonitride by zirconium on the interaction mechanism with the Ni–Mo melt, Izv. Vyssh. Uchebn. Zaved. Poroshk. Metall. Funkts. Pokryt., 2016, no. 3, pp. 31–42.

  20. Zhilyaev, V.A. and Patrakov, E.I., Kinetics and mechanism of the contact interaction of titanium carbonitride with Ni–Mo-melt, Izv. Vyssh. Uchebn. Zaved. Poroshk. Metall. Funkts. Pokryt., 2015, no. 2, pp. 30–37.

  21. Zhilyaev, V.A., Powder materials based on refractory interstitial phases, Doctoral (Eng.) Dissertation, Perm’: Perm’ Gos. Tekh. Univ., 2010.

  22. Serezhkin, V.N. and Pushkin, D.V., Kristallokhimicheskie radiusy i koordinatsionnye chisla atomov (Crystal Chemical Radii and Coordination Numbers of Atoms), Samara: Univers-Group, 2005.

  23. Baum, B.A., Metallicheskie zhidkosti (Metal Liquids), Moscow: Nauka, 1979.

  24. Gavrilin, I.V., Plavlenie i kristallizatsiya metallov i splavov (Melting and Crystallization of Metals and Alloys), Vladimir: Vladimir. Gos. Univ., 2000.

  25. Zhilyaev, V.A. and Patrakov, E.I., The mechanism of liquid-phase interaction of double carbides (Ti,Me)C with nickel, Konstr. Kompoz. Mater., 2006, no. 4, pp. 199–201.

  26. Diagrammy sostojanija dvojnyh metallicheskih system: Spravochnik (Phase Diagrams of Binary Metallic Systems: Handbook), Lyakishev, N.P., Ed., Moscow: Mashinostroenie, 1996.

    Google Scholar 

  27. Ershov, G.S. and Maiboroda, V.P., Diffuziya v metallurgicheskikh rasplavakh (Diffusion in Metallurgical Melts), Kiev: Naukova Dumka, 1990.

  28. Zhilyaev, V.A. and Patrakov, E.I., Effect of doping by Group IV–VI transition metals of titanium carbonitride on the interaction with the nickel melt, Izv. Vyssh. Uchebn. Zaved. Poroshk. Metall. Funkts. Pokryt., 2014, no. 4, pp. 30–36.

  29. Zhilyaev, V.A. and Patrakov, E.I., Regularities of the contact interaction of (Ti1–n \({\text{Me}}_{n}^{{{\text{IV}}{\text{,V}}}})\)C double carbides with the Ni–Mo melt, Izv. Vyssh. Uchebn. Zaved. Poroshk. Metall. Funkts. Pokryt., 2015, no. 3, pp. 25–35.

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. A. Zhilyaev or E. I. Patrakov.

Additional information

Translated by N. Korovin

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhilyaev, V.A., Patrakov, E.I. Regularities of Metallurgical Reactions of Ti1 –n\({\text{Me}}_{n}^{{\text{V}}}\)C0.5N0.5 Carbonitrides with the Ni–Mo Melt. Russ. J. Non-ferrous Metals 59, 664–670 (2018). https://doi.org/10.3103/S1067821218060196

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1067821218060196

Keywords:

Navigation