Skip to main content
Log in

Prediction of Misruns in ML5 (AZ91) Alloy Casting and Alloy Fluidity Using Numerical Simulation

  • FOUNDRY
  • Published:
Russian Journal of Non-Ferrous Metals Aims and scope Submit manuscript

Abstract

Predicting the misrun formation in thin-walled castings of magnesium alloys is a critical task for foundry. The computer simulation of casting processes can be used to solve this problem. Adequate results of simulation can be attained in the presence of the correct thermal properties of the alloy and a mold in a wide temperature range, interface heat-transfer coefficient between the casting and a mold, and the critical solid fraction (at which the melt flow in a mold is stopped). In this work, the interface heat-transfer coefficient between the ML5 (AZ91) magnesium alloy and a no-bake sand mold is found by comparing simulation spiral test lengths with experimental spiral test lengths under the same pouring conditions. Its values above the liquidus temperature are hL = 1500 W/(m2 K) at pouring temperatures of 670 and 740°C and hL = 1800 W/(m2 K) at 810°C. Below the solidus temperature, hS = 600 W/(m2 K). The critical solid fraction for the ML5 (AZ91) magnesium alloy was also determined for no-bake mold casting (with a cooling rate of ~2 K/s)—its value was 0.1–0.15. The critical solid fraction is refined by comparing the position of misruns by the results of simulation and in an actual “Protective cap” ML5 (AZ91) alloy casting poured into the no-bake mold. Castings are poured at temperatures of 630 and 670°C, and the critical solid fraction is 0.1 in both cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Jakumeit, J., Subasic, E., and Bünck, M., Prediction of misruns in thin wall castings using computational simulation, in: Shape Casting: 5th Int. Symp., San Diego: Wiley, 2014, pp. 253-260.

  2. Humphreys, N.J., McBride, D., Shevchenko, D.M., Croft, T.N., Withey, P., Green, N.R., and Cross, M., Modelling and validation: Casting of Al and TiAl alloys in gravity and centrifugal casting processes, Appl. Math. Model., 2013, vol. 37, nos. 14–15, pp. 7633–7643.

  3. Di Sabatino, M. and Arnberg, L., A review on the fluidity of Al based alloys, Metall. Sci. Technol., 2004, vol. 22, no. 1, pp. 9–15.

    Google Scholar 

  4. Pikunov, M.V., Plavka metallov, kristallizatsiya splavov, zatverdevanie otlivok: Uchebnoe posobie dlya vuzov (Melting of Metals, Crystallization of Alloys, and Solidification of Castings: Textbook for Higher School), Moscow: MISiS, 2005.

  5. Di Sabatino, M., Arnberg, L., Brusethaug, S., and Apelian, D., Fluidity evaluation methods for Al–Mg–Si alloys, Int. J. Cast Met. Res., 2006, vol. 19, pp. 94–97.

    Article  Google Scholar 

  6. Li, Y., Wu, G., Chen, A., Liu, W., Wang, Y., and Zhang, L., Effects of processing parameters and addition of flame-retardant into moulding sand on the microstructure and fluidity of sand-cast magnesium alloy Mg–10Gd–3Y–0.5Zr, J. Mater. Sci. Technol., 2017, vol. 33, no. 6, pp. 558–566.

    Article  Google Scholar 

  7. Hua, Q., Gao, D., Zhang, H., Zhang, Y., and Zhai, Q., Influence of alloy elements and pouring temperature on the fluidity of cast magnesium alloy, Mater. Sci. Eng. A, 2007, vol. 444, nos. 1–2, pp. 69–74.

  8. Koltygin, A.V. and Plisetskaya, I.V., Influence of small calcium additives on fluidity of magnesium alloys, Liteishchik Rossii, 2011, no. 6, pp. 41–43.

  9. Ravi, K.R., Pillai, R.M., Amaranathan, K.R., Pai, B.C., and Chakraborty, M., Fluidity of aluminum alloys and composites: A review, J. Alloys Compd., 2008, vol. 456, nos. 1–2, pp. 201–210.

  10. Dahle, A.K. and Arnberg, L., Development of strength in solidifying aluminium alloys, Acta Mater., 1997, vol. 45, no. 2, pp. 547–559.

    Article  Google Scholar 

  11. Veldman, N.L., Dahle, A.K., StJohn, D.H., and Arnberg, L., Dendrite coherency of Al–Si–Cu alloys, Metall. Mater. Trans. A, 2001, vol. 32, no. 1, pp. 147–155.

    Article  Google Scholar 

  12. Dahle, A.K., Tundel, P.A., Paradies, C.J., and Arnberg, L., Effect of grain refinement on the fluidity of two commercial Al–Si foundry alloys, Metall. Mater. Trans. A, 1996, vol. 27, no. 8, pp. 2305–2313.

    Article  Google Scholar 

  13. Kryl, M., Tacski, T., Matula, G., Snopinski, P., and Tomiczek, A.E., Analysis of crystallisation process of cast magnesium alloys based on thermal derivative analysis, Arch. Metall. Mater., 2015, vol. 60, no. 4, pp. 2993–2999.

    Article  Google Scholar 

  14. Liang, S.M., Chen, R.S., Blandin, J.J., Suery, M., and Han, E.H., Thermal analysis and solidification pathways of Mg–Al–Ca system alloys, Mater. Sci. Eng. A, 2008, vol. 480, nos. 1–2, pp. 365–372.

  15. Gourlay, C.M., Meylan, B., and Dahle, A.K., Shear mechanisms at 0–50% solid during equiaxed dendritic solidification of an AZ91 magnesium alloy, Acta Mater., 2008, vol. 56, no. 14, pp. 3403–3413.

    Article  Google Scholar 

  16. Gourlay, C.M., Meylan, B., and Dahle, A.K., Rheological transitions at low solid fraction in solidifying magnesium alloy AZ91, Mater. Sci. Forum, 2007, vol. 561–565, pp. 1067–1070.

  17. Hou, D.-H., Liang, S.-M., Chen, R.-S., Dong, C., and Han, E.-H., Effects of Sb content on solidification pathways and grain size of AZ91 magnesium alloy, Acta Metal. Sinica (Engl. Lett.), 2015, vol. 28, no. 1, pp. 115–121.

  18. Barber, L.P., Characterization of the solidification behavior and resultant microstructures of magnesium-aluminum alloys: A Master Degree Thesis, Worchester: Worchester Polytech. Inst., 2004.

  19. Rajaraman, R. and Velraj, R., Comparison of interfacial heat transfer coefficient estimated by two different techniques during solidification of cylindrical aluminum alloy casting, Heat Mass Transfer, 2008, vol. 44, no. 9, pp. 1025–1034.

    Article  Google Scholar 

  20. Chen, L., Wang, Y., Peng, L., Fu, P., and Jiang, H., Study on the interfacial heat transfer coefficient between AZ91D magnesium alloy in silica sand, Exp. Thermal Fluid Sci., 2014, vol. 54, pp. 196–203.

    Article  Google Scholar 

  21. Wang, D., Zhou, C., Xu, G., and Huaiyuan, A., Heat transfer behavior of top side-pouring twin-roll casting, J. Mater. Process. Technol., 2014, vol. 214, no. 6, pp. 1275–1284.

    Article  Google Scholar 

  22. Griffiths, W. and Kawai, K., The effect of increased pressure on interfacial heat transfer in the aluminium gravity die casting process, J. Mater. Sci., 2010, vol. 45, no. 9, pp. 2330–2339.

    Article  Google Scholar 

  23. Sun, Z., Hu, H., and Niu, X., Determination of heat transfer coefficients by extrapolation and numerical inverse methods in squeeze casting of magnesium alloy AM60, J. Mater. Process. Technol., 2011, vol. 211, no. 8, pp. 1432–1440.

    Article  Google Scholar 

  24. Nishida, Y., Droste, W., and Engler, S., The air-gap formation process at the casting-mold interface and the heat transfer mechanism through the gap, Metall. Trans. B, 1986, vol. 17, no. 4, pp. 833–844.

    Article  Google Scholar 

  25. Tikhomirov, M.D., Simulation of thermal and shrinkage processes during the solidification of castings of high-strength aluminum alloys and development of the computer analysis system of the casting technology, Extended Abstract of Cand. Sci. (Eng.) Dissertation, St. Petersburg: SPb Gos. Politekh. Univ., 2004.

  26. Bouchard, D., Leboeuf, S., Nadeau, J.P., Guthrie, R.I.L., and Isac, M., Dynamic wetting and heat transfer at the initiation of aluminum solidification on copper substrates, J. Mater. Sci., 2009, vol. 44, no. 8, pp. 1923–1933.

    Article  Google Scholar 

  27. Lu, S.-L., Xiao, F.-R., Zhang, S.-J., Mao, Y.-W., and Liao, B., Simulation study on the centrifugal casting wet-type cylinder liner based on ProCAST, Appl. Thermal Eng., 2014, vol. 73, no. 1, pp. 512–521.

    Article  Google Scholar 

  28. Di Sabatino, M., Arnberg, L., and Bonollo, F., Simulation of fluidity in Al–Si alloys, Metall. Sci. Technol., 2005, vol. 23, no. 1, pp. 3–10.

    Google Scholar 

  29. Bazhenov, V.E., Petrova, A.V., and Koltygin, A.V., Simulation of fluidity and misrun prediction for the casting of 356.0 aluminum alloy into sand molds, Int. J. Metalcasting, 2018, vol. 12, no. 3, pp. 514–522.

    Article  Google Scholar 

  30. Palumbo, G., Piglionico, V., Piccininni, A., Guglielmi, P., Sorgente, D., and Tricarico, L., Determination of interfacial heat transfer coefficients in a sand mould casting process using an optimised inverse analysis, Appl. Thermal Eng., 2015, vol. 78, pp. 682–694.

    Article  Google Scholar 

  31. Zhmurikov, E.I., Savchenko, I.V., Stankus, S.B., and Tecchio, L., Measurements of thermal properties of graphite composites for a neutron target converter, Vestn. NGU. Ser. Fiz., 2011, vol. 6, no. 2, pp. 77–84.

    Google Scholar 

  32. Bazhenov, V.E., Koltygin, A.V., Tseloval’nik, Yu.V., and Sannikov, A.V., Determination of interface heat transfer coefficient between aluminum casting and graphite mold, Russ. J. Non-Ferrous Met., 2017, vol. 58, no. 2, pp. 114–123.

    Article  Google Scholar 

  33. Bazhenov, V.E., Petrova, A.V., Koltygin, A.V., and Tseloval’nik, Yu.V., Determination of heat transfer coefficient between AZ91 magnesium alloy casting and no-bake mold, Tsvetn. Met., 2017, no. 8, pp. 89–96.

Download references

ACKNOWLEDGMENTS

This study was supported by the Ministry of Education and Science of the Russian Federation, contract no. 03.G25.31.0274 dated May 27, 2017, and a Grant of the President of the Russian Federation to young scientists and postgraduates who are carrying out scientific investigations and developments in the priority directions of the Russian Federation’s economy modernization (2016–2018 contest).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. V. Petrova, V. E. Bazhenov or A. V. Koltygin.

Additional information

Translated by N. Korovin

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Petrova, A.V., Bazhenov, V.E. & Koltygin, A.V. Prediction of Misruns in ML5 (AZ91) Alloy Casting and Alloy Fluidity Using Numerical Simulation. Russ. J. Non-ferrous Metals 59, 617–623 (2018). https://doi.org/10.3103/S1067821218060159

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1067821218060159

Keywords:

Navigation