Skip to main content
Log in

Investigation into the X-Radiation Effect on the Structure and Microhardness of the Tungsten Powder-Filled Composite

  • MODIFICATION OF THE SURFACE, PARTICULARLY BY BEAMS OF CHARGED PARTICLES AND PHOTON AND PLASMA FLUXES
  • Published:
Russian Journal of Non-Ferrous Metals Aims and scope Submit manuscript

Abstract

The radiation resistance of a composite material filled with finely dispersed tungsten powder with a particle size of 200–500 nm is investigated. A new composite is intended to provide the radiation protection for electronic radio equipment. The sample with the material under study is irradiated by continuous-spectrum X-ray radiation to the absorbed dose of 3 MGy. The variation in the sample microhardness before and after X-ray irradiation serves as the radiation-resistance characteristic. The microstructure of the transverse sample cleavage after irradiation is investigated by scanning electron microscopy and the absence of visible structural defects is established. This result can be explained by uniform energy scattering from local stresses due to a high degree of composite filling with the tungsten powder possessing a high heat-conductivity coefficient. A 10% increase in microhardness of the irradiated sample is revealed during the investigation, which can be explained by the radiation strengthening effect, when the simultaneous rise in microhardness occurs with an increase in strength. It is established experimentally that this effect manifests itself with an increase in the absorbed radiation dose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Lohmeyer, W.Q. and Cahoy, K., Space weather radiation effects on geostationary satellite solid-state power amplifiers, Space Weather, 2013, vol. 11, pp. 476–488.

    Article  Google Scholar 

  2. Zeynali, O., Masti, D., and Gandomkar, S., Shielding protection of electronic circuits against radiation effects of space high energy particles, Adv. Appl. Sci. Res., 2012, vol. 3, no. 1, pp. 446–451.

    Google Scholar 

  3. Hess, Wilmot N., Energetic particles in the inner Van Allen belt, Space Sci. Rev., 1962, vol. 1, pp. 278–312.

    Article  Google Scholar 

  4. Wilson, J.W., Thibeault, S.A., Cucinotta, F.A., Shinn, J.L., Kim, M., Kiefer, R., and Badavi, F.F., Issues in protection from galactic cosmic rays, Radiat. Environ. Biophys., 1995, vol. 34, pp. 217–222.

    Article  Google Scholar 

  5. Boudenot, J.-Cl, Radiation space environment, in: Radiation Effects on Embedded Systems, Dordrecht: Springer, 2007, pp. 1–9.

    Google Scholar 

  6. Model' kosmosa: Nauchno-informatsionnoe izdanie (Model of the Space: Scientific-and-Information Edition), Panasyuk, M.I. and Novikov, L.S., Eds., Moscow: KDU, 2007, vol. 1.

    Google Scholar 

  7. Rawal, Suraj P., Metal-matrix composites for space applications, J. Miner. Met. Mater. Soc., 2001, vol. 53, pp. 14–17.

    Article  Google Scholar 

  8. Noor Azman Nurul, Z., Siddiqu Salim, A., and Low, It.M., Synthesis and characterization of epoxy composites filled with Pb, Bi or W compound for shielding of diagnostic X-rays, Appl. Phys., 2013, vol. 110, pp. 137–144.

    Article  Google Scholar 

  9. Pavlenko, V.I., Yastrebinskii, R.H., Edamenko, O.D., and Tarasov, D.G., Effect of high-energy fast electron beams on polymeric radiation-protected composites, Vopr. At. Nauki Tekh. Ser. Fiz. Radiat. Povrezhd. Radiat. Materialoved., 2010, no. 1, pp. 129–134.

  10. Grishina, A.N. and Korolev, E.V., Zhidkostekol’nye stroitel’nye materialy spetsial’nogo naznacheniya (Liquid-Glass Special Building Materials), Moscow: Mos. Gos. Str. Univ., 2015.

    Google Scholar 

  11. Vilkov, F.E., Vladimirov, B.V., Tolmachev, V.I., Bocharov, E.N., Agafonov, R.Yu., and Popkova, O.G., RF Patent 2605608, 2016.

  12. Vilkov, F.E., Lozovan, A.A., Bazhanov, A.V., Kasitsyn, A.N., Shchekoturova, O.E., and Solovev, M.K., Investigation of radiation-protective properties of highly filled liquid glass material, J. Surf. Invest.: X-ray, Synch. Neutron Tech., 2017, vol. 11, no. 5, pp. 912–916.

    Article  Google Scholar 

  13. Källen, G., Elementary Particle Physics, MA: Addison-Wesley, 1964.

    Google Scholar 

  14. Nilam, S., Singh, N.L., Desai, C.F., and Singh, K.P., Microhardness and radiation damage studies of proton irradiated Kapton films, Radiat. Meas., 2003, vol. 36, pp. 699–702.

    Article  Google Scholar 

  15. Ganeev, R.A., Low-power laser hardening of steels, J. Mater. Process. Technol., 2002, vol. 121, pp. 414–419.

    Article  Google Scholar 

  16. Manas, D., Hribova, M., Manas, M., Ovsik, M., Stanek, M., and Samek, D., The effect of beta irradiation on morphology and micro hardness of polypropylene thin layers, Thin Solid Films, 2013, vol. 530, pp. 49–52.

    Article  Google Scholar 

  17. Shah, N., Singh, D., Shah, S., Qureshi, A., Singh, N.L., and Singh, K.P., Study of microhardness and electrical properties of proton irradiated polyethersulfone (PES), Bull. Mater. Sci., 2007, vol. 30, pp. 477–480.

    Article  Google Scholar 

  18. Golovin, Y.I., Dmitrievskii, A.A., Suchkova, N.Y., and Badylevich, M.V., Multistage radiation-stimulated changes in the microhardness of silicon single crystals exposed to low-intensity β irradiation, Phys. Solid State, 2005, vol. 47, pp. 1278–1281.

    Article  Google Scholar 

  19. GOST (State Standard) 9450–76: Measurement of microhardness by indentation of diamond tips, Moscow: Izd. Standartov, 1977.

  20. Bezrodnih, I.P., Morozova, E.I., and Pertukovich, A.A., Radiation conditions in geostationary orbit, Vopr. Elektromekh., Tr. NPP “VNIIEM”, 2010, vol. 117, no. 4, pp. 33–42.

    Google Scholar 

  21. Bezdornih, I.P., Kazantsev, S.G., and Semenov, V.T., Radiation conditions in sun-synchronous orbits during the period of maximum solar activity, Vopr. Elektromekh., Tr. NPP “VNIIEM”, 2010, vol. 116, no. 3, pp. 23–26.

    Google Scholar 

  22. Panasyuk, M.I., Podzolko, M.V., Kovtyukh, A.S., Osedlo, V.I., Tulupov, V.I., and Yashin, I.V., Modeling radiation conditions in orbits of projected system of small satellites for radiation monitoring, Cosmic Res., 2016, vol. 54, pp. 411–415.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. A. Lozovan or F. E. Vilkov.

Additional information

Translated by N. Korovin

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lozovan, A.A., Vilkov, F.E. Investigation into the X-Radiation Effect on the Structure and Microhardness of the Tungsten Powder-Filled Composite. Russ. J. Non-ferrous Metals 59, 693–697 (2018). https://doi.org/10.3103/S1067821218060135

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1067821218060135

Keywords:

Navigation