Advertisement

Russian Journal of Non-Ferrous Metals

, Volume 59, Issue 1, pp 111–116 | Cite as

Fabrication of Cerium Oxide Nanoparticles by Solution Combustion Synthesis and Their Cytotoxicity Evaluation

  • M. Zarezadeh Mehrizi
  • S. Ahmadi
  • R. Beygi
  • M. Asadi
Self-Propagating High-Temperature Synthesis
  • 43 Downloads

Abstract

The diverse abilities such as the antioxidant effect of cerium oxide nanoparticles (CeO2-NPs) have encouraged researchers to pursue CeO2-NPs as a therapeutic agent to treat a number of diseases, including cancer and diabetes. The synthesis method of CeO2-NPs affected on its abilities. In this study, nanosize ceria powders were synthesized by combustion of aqueous containing corresponding cerium nitrate, ammonium nitrate, and glycine redox mixtures. Solution combustion synthesis is a fast and cost-efficient process with high purity product. The crystallite structures were characterized by various methods, including X-ray diffraction technique, high-resolution scanning electron microscopy, transmission electron microscopy, and UV–vis spectroscopy technique. The combustion was flaming and yields voluminous oxides with nano size (20–30 nm). In addition, no diffraction patterns that are characteristic of impurities were observed, indicating the purity of the CeO2-NPs. In vitro cytotoxicity studies on L929 cells, a non-toxic effect in all concentration (up to 1000 μg/mL) was indicated and it can be believed that this nanoparticle will have viable applications in different medical fields.

Keywords

CeO2 nanoparticle solution combustion synthesis cytotoxicity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Goharshadi, E.K., Samiee, S., and Nancarrow, P., Fabrication of cerium oxide nanoparticles: characterization and optical properties, J. Colloids Interface Sci., 2011, vol. 356, pp. 473–480.CrossRefGoogle Scholar
  2. 2.
    Trovarelli, A., de Leitenburg, C., Boaro, M., and Dolcetti, G., The utilization of ceria in industrial catalysis, Catal. Today, 1999, vol. 50, pp. 553–367.CrossRefGoogle Scholar
  3. 3.
    Lavkova, J., Khalakhan, I., Chundak, M., Vorokhta, M., Potin, V., Matolin, V., and Matolinova, I., Growth and composition of nanostructured and nanoporous cerium oxide thin films on a graphite foil, Nanoscale, 2015, vol. 7, pp. 4038–4047.CrossRefGoogle Scholar
  4. 4.
    Jin, H., Wang, N., Xu, L., and Hou, S., Synthesis and conductivity of cerium oxide nanoparticles, Mater. Lett., 2010, vol. 64, pp. 1254–1256.CrossRefGoogle Scholar
  5. 5.
    Kargar, H., Ghasemi, F., and Darroudi, M., Bioorganic polymer-based synthesis of cerium oxide nanoparticles and their cell viability assays, Ceram. Int., 2015, vol. 41, pp. 1589–1594.CrossRefGoogle Scholar
  6. 6.
    Pulido-Reyes, G. and Rodea-Palomares, I., Das, S., Sakthivel, T.S., Leganes, F., Rosal, R., Seal, S., and Fernández-Piñas, F., Untangling the biological effects of cerium oxide nanoparticles: the role of surface valence states, Sci. Rep., 2015, vol. 5, p. 15613.CrossRefGoogle Scholar
  7. 7.
    Das, M., Patil, S., Bhargava, N., Kang, J.-F., Riedel, L.M., Seal, S., and Hickman, J.J., Auto-catalytic ceria nanoparticles offer neuroprotection to adult rat spinal cord neurons, Biomaterials, 2007, vol. 28, pp. 1918–1925.CrossRefGoogle Scholar
  8. 8.
    Tarnuzzer, R.W., Colon, J., Patil, S., and Seal, S., Vacancy engineered ceria nanostructures for protection from radiation-induced cellular damage, Nano Lett., 2005, vol. 5, pp. 2573–2577.CrossRefGoogle Scholar
  9. 9.
    Pešic, M., Podolski-Renić, A., Stojković, S., Matović, B., Zmejkoski, D., Kojić, V., Bogdanović, G., Pavićević, A., Mojović, M., and Savić, A., Anti-cancer effects of cerium oxide nanoparticles and its intracellular redox activity, Chem.-Biol. Interact., 2015, vol. 232, pp. 85–93.CrossRefGoogle Scholar
  10. 10.
    Godinho, M., Goncalves, R., Santos, L.S., Varela, J.A., Longo, E., and Leite, E., Room temperature co-precipitation of nanocrystalline CeO2 and Ce0.8Gd0.2O1.9–δ powder, Mater. Lett., 2007, vol. 61, pp. 1904–1907.CrossRefGoogle Scholar
  11. 11.
    Meng, F., Gong, J., Fan, Z., Li, H., and Yuan, J., Hydrothermal synthesis and mechanism of triangular prism-like monocrystalline CeO2 nanotubes via a facile template-free hydrothermal route, Ceram. Int., 2016, vol. 42, pp. 4700–4708.CrossRefGoogle Scholar
  12. 12.
    Tambat, S., Umale, S., and Sontakke, S., Photocatalytic degradation of Milling Yellow dye using sol–gel synthesized CeO2, Mater. Res. Bull., 2016, vol. 76, pp. 466–472.CrossRefGoogle Scholar
  13. 13.
    He, D., Hao, H., Chen, D., Lu, J., Zhong, L., Chen, R., Liu, F., Wan, G., He, S., and Luo, Y., Rapid synthesis of nano-scale CeO2 by microwave-assisted sol-gel method and its application for CH3SH catalytic decomposition, J. Environ. Chem. Eng., 2016, vol. 4, pp. 311–318.CrossRefGoogle Scholar
  14. 14.
    Dutta, S., Nandy, A., Dutta, A., and Pradhan, S., Structure and microstructure dependent ionic conductivity in 10-mol %-Dy2O3-doped CeO2 nanoparticles synthesized by mechanical alloying, Mater. Res. Bull., 2016, vol. 73, pp. 446–451.CrossRefGoogle Scholar
  15. 15.
    Phoka, S., Laokul, P., Swatsitang, E., Promarak, V., Seraphin, S., and Maensiri, S., Synthesis, structural and optical properties of CeO2 nanoparticles synthesized by a simply polyvinyl pyrrolidone (PVP) route, Mater. Chem. Phys., 2009, vol. 115, pp. 423–428.CrossRefGoogle Scholar
  16. 16.
    Zhang, C., Zhang, X., Wang, Y., Xie, S., Liu, Y., Lu, X., and Tong, Y., Facile electrochemical synthesis of CeO2 hierarchical nanorods and nanowires with excellent photocatalytic activities, New J. Chem., 2014, vol. 38, pp. 2581–2586.CrossRefGoogle Scholar
  17. 17.
    Bakkiyaraj, R., Bharath, G., Ramsait, K.H., Abdel-Wahab, A., Alsharaeh, E.H., Chen, S.-M., and Balakrishnan, M., Solution combustion synthesis and physico-chemical properties of ultrafine CeO2 nanoparticles and their photocatalytic activity, RSC Adv., 2016, vol. 6, pp. 51238–51245.CrossRefGoogle Scholar
  18. 18.
    Mokkelbost, T., Kaus, I., Grande, T., and Einarsrud, M.-A., Combustion synthesis and characterization of nanocrystalline CeO2-based powders, Chem. Mater., 2004, vol. 16, pp. 5489–5494.CrossRefGoogle Scholar
  19. 19.
    Rao, K.V. and Sunandana, C., Co3O4 nanoparticles by chemical combustion: effect of fuel to oxidizer ratio on structure, microstructure, and EPR, Solid State Commun., 2008, vol. 148, pp. 32–37.CrossRefGoogle Scholar
  20. 20.
    Ravishankar, T.N., Ramakrishnappa, T., Nagaraju, G., and Rajanaika, H., Synthesis and Characterization of CeO2 nanoparticles via solution combustion method for photocatalytic and antibacterial activity studies, Chem.Open, 2015, vol. 4, pp. 146–154.Google Scholar
  21. 21.
    Patil, K., Chemistry of Nanocrystalline Oxide Materials: Combustion Synthesis, Properties and Applications, London, NJ: World Scientific, 2008.CrossRefGoogle Scholar
  22. 22.
    Mukasyan, A.S., Epstein, P., and Dinka, P., Solution combustion synthesis of nanomaterials, Proc. Combust. Inst., 2007, vol. 31, pp. 1789–1795.CrossRefGoogle Scholar
  23. 23.
    Demokritou, P., Gass, S., Pyrgiotakis, G., Cohen, J.M., Goldsmith, W., McKinney, W., Frazer, D., Ma, J., Schwegler-Berry, D., Brain, J., and Castranova, V., An in vivo and in vitro toxicological characterization of realistic nanoscale CeO2 inhalation exposures, Nanotoxicology, 2013, vol. 7, pp. 1338–1350.CrossRefGoogle Scholar
  24. 24.
    Karakoti, A.S., Munusamy, P., Hostetler, K., Kodali, V., Kuchibhatla, S., Orr, G., Pounds, J.G., Teeguarden, J.G., Thrall, B.D., and Baer, D.R., Preparation and characterization challenges to understanding environmental and biological impacts of nanoparticles, Surf. Interface Anal.: SIA, 2012, vol. 44, pp. 882–889.CrossRefGoogle Scholar
  25. 25.
    Peng, L., He, X., Zhang, P., Zhang, J., Li, Y., Zhang, J., Ma, Y., Ding, Y., Wu, Z., Chai, Z., and Zhang, Z., Comparative pulmonary toxicity of two ceria nanoparticles with the same primary size, Int. J. Mol. Sci., 2014, vol. 15, p. 6072.CrossRefGoogle Scholar
  26. 26.
    Heidarpour, A., Abbasi, M., Saidi, A., and Choi, G., Synthesis and sintering of Sr-and Ca-doped lanthanum chromite ultrafine powder for SOFC interconnect, J. Mater. Sci., 2013, vol. 48, pp. 1401–1406.CrossRefGoogle Scholar
  27. 27.
    Wen, W. and Wu, J.-M., Nanomaterials via solution combustion synthesis: a step nearer to controllability, RSC Adv., 2014, vol. 4, pp. 58090–58100.CrossRefGoogle Scholar
  28. 28.
    Bondioli, F., Corradi, A.B., Leonelli, C., and Manfredini, T., Nanosized CeO2 powders obtained by flux method, Mater. Res. Bull., 1999, vol. 34, pp. 2159–2166.CrossRefGoogle Scholar
  29. 29.
    Mosmann, T., Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays, J. Immun. Methods, 1983, vol. 65, pp. 55–63.CrossRefGoogle Scholar
  30. 30.
    Cho, M.-Y., Roh, K.-C., Park, S.-M., Choi, H.-J., and Lee, J.-W., Control of particle size and shape of precursors for ceria using ammonium carbonate as a precipitant, Mater. Lett., 2010, vol. 64, 323–326.CrossRefGoogle Scholar
  31. 31.
    Foger, K., Hoang, M., and Turney, T., Formation and thermal decomposition of rare-earth carbonates, J. Mater. Sci., 1992, vol. 27, pp. 77–82.CrossRefGoogle Scholar
  32. 32.
    Pelletier, D.A., Suresh, A.K., Holton, G.A., McKeown, C.K., Wang, W., Gu, B., Mortensen, N.P., Allison, D.P., Joy, D.C., Allison, M.R., Brown, S.D., Phelps, T.J., and Doktycz, M.J., Effects of engineered cerium oxide nanoparticles on bacterial growth and viability, Appl. Environ. Microbiol., 2010, vol. 76, pp. 7981–7989.CrossRefGoogle Scholar
  33. 33.
    Alam, B., Philippe, A., Rosenfeldt, R.R., Seitz, F., Dey, S., Bundschuh, M., Schaumann, G.E., and Brenner, S.A., Synthesis, characterization, and ecotoxicity of CeO2 nanoparticles with differing properties, J. Nanopart. Res., 2016, vol. 18, p. 303.CrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  • M. Zarezadeh Mehrizi
    • 1
  • S. Ahmadi
    • 1
  • R. Beygi
    • 1
  • M. Asadi
    • 2
  1. 1.Department of Materials Science and Engineering, Faculty of EngineeringArak UniversityArakIran
  2. 2.Endocrinology and Metabolism Research CenterArak University of Medical SciencesArakIran

Personalised recommendations