Russian Journal of Non-Ferrous Metals

, Volume 59, Issue 1, pp 50–55 | Cite as

A Novel Developed Grain Refiner (Al–Y–B Master Alloys) Using Yttrium and KBF4 Powders

  • Rongfu Xu
  • Qingzhou Sun
  • Zhigang Wang
  • Yong Xu
  • Wencheng Ren


The present work aims to report and discuss the development of a novel grain refiner (Al–Y–B master alloys) focusing on the characterization of the phenomena that exist during their production. Al–Y–B master alloy is produced by the combined employment of yttrium and boron, instead of yttrium or boron individually. It is discovered as a highly effective grain refiner for inoculating the grain size of Al–Si alloys. The crystallized microstructure can be refined though the effect of Y-based intermetallic on heterogeneity nucleus. The Y-based intermetallic is formed in the melts (Al–Y–B master alloy) by the addition of yttrium and KBF4 powers. A approach to produce Al–Y–B master alloys as well as its characterization by means of optical micrographs and SEM is presented. The study is assessed by testing the grain refining potency of the produced Al–Y–B master alloys in binary Al–20Si alloy. It is revealed that the approach employed to produce the Al–Y–B master alloys is suitable because the size of the primary phases is significantly reduced in each of the case investigated.


master alloy aluminum alloys grain refinement Y–B inoculation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hosch, T. and Napolitano, R.E., The effect of the flake to fiber transition in silicon morphology on the tensile properties of Al–Si eutectic alloys [J], Mater. Sci. Eng. A, 2010, vol. 528, no. 1, pp. 226–232.CrossRefGoogle Scholar
  2. 2.
    Xu, R., Zheng, H., Guo, F., et al., A new investigated method on hot tearing behavior in aluminum alloys [J], Russ. J. of Non-Ferrous Met., 2013, vol. 54, no. 5, pp. 377–382.CrossRefGoogle Scholar
  3. 3.
    Kotadia, H.R., Solidification Behaviour of Al–Sn–Cu Immiscible Alloys and Al–Si Cast Alloys Processed under Intensive Shearing [J], Brunel Univ., 2010Google Scholar
  4. 4.
    Murty, B.S., Kori, S.A., and Chakraborty, M., Grain refinement of aluminium and its alloys by heterogeneous nucleation and alloying [J], Int. Mater. Rev., 2002, vol. 47, no. 1, pp. 3–29.CrossRefGoogle Scholar
  5. 5.
    McCartney, D.G., Grain refining of aluminium and its alloys using inoculants [J], Int. Mater. Rev., 1989, vol. 34, no. 1, pp. 247–260.CrossRefGoogle Scholar
  6. 6.
    Nowak, M., Yeoh, W.K., Bolzoni, L., et al., Development of Al–Nb–B master alloys using Nb and KBF 4 Powders [J], Mater. Des., 2015, vol. 75, no. 5, pp. 40–46.CrossRefGoogle Scholar
  7. 7.
    Guzowski, M.M., Sigworth, G.K., and Sentner, D.A., Role of boron in the grain refinement of aluminum with titanium [J], Metall. Trans. A (United States), 1987, vol. 18A, no. 4, pp. 603–619.CrossRefGoogle Scholar
  8. 8.
    Jones, G.P. and Pearson, J., Factors affecting the grain-refinement of aluminum using titanium and boron additives [J], Metall. Mater. Trans. B, 1976, vol. 7, no. 2, pp. 223–234.CrossRefGoogle Scholar
  9. 9.
    Binney, M.N., John, D.H.S., Dahle, A.K., et al., Grain refinement of secondary aluminium-silicon casting alloys [J], Tms Light Met., 2003, pp. 917–922.Google Scholar
  10. 10.
    Nowak, M., Bolzoni, L., and Babu, N.H., Grain refinement of Al–Si alloys by Nb–B inoculation. Part I: Concept development and effect on binary alloys [J], Mater. Des. (1980-2015), 2015, vol. 66, pp. 366–375.CrossRefGoogle Scholar
  11. 11.
    Zhang, Y., Zheng, H., Liu. Y., et al., Cluster-assisted nucleation of silicon phase in hypoeutectic Al–Si alloy with further inoculation [J], Acta Mater., 2014, vol. 70, no. 5, pp. 162–173.CrossRefGoogle Scholar
  12. 12.
    Sun, Y., Pang, S.P., Liu, X.R., et al., Nucleation and growth of eutectic cell in hypoeutectic Al–Si alloy [J], Trans. Nonferrous Met. Soc. China, 2011, vol. 21, no. 10, pp. 2186–2191.CrossRefGoogle Scholar
  13. 13.
    Zhang, Y., Miao, X., Shen, Z., et al., Macro segregation formation mechanism of the primary silicon phase in directionally solidified Al–Si hypereutectic alloys under the impact of electric currents [J], Acta Mater., 2015, vol. 97, pp. 357–366.CrossRefGoogle Scholar
  14. 14.
    Prukkanon, W., Srisukhumbowornchai, N., and Limmaneevichier, C., Modification of hypoeutectic Al–Si alloys with scandium [J], J. Alloys Compd., 2009, vol. 477, nos. 1–2, pp. 454–460.CrossRefGoogle Scholar
  15. 15.
    Nogita, K., Yasuda, H., Yoshiya, M., et al., The role of trace element segregation in the eutectic modification of hypoeutectic Al–Si alloys [J], J. Alloys Compd., 2010, vol. 489, no. 2, pp. 415–420.CrossRefGoogle Scholar
  16. 16.
    Kumari, S.S.S., Pillai, R.M., and Pai, B.C., Structure and properties of calcium and strontium treated Al–7Si–0.3Mg alloy: A comparison [J], J. Alloys Compd., 2008, vol. 460, no. 1, pp. 472–477.CrossRefGoogle Scholar
  17. 17.
    Shabsetari, S.G. and Shahri, F., Influence of modification, solidification conditions and heat treatment on the microstructure and mechanical properties of A356 aluminum alloy [J], J. Mater. Sci., 2004, vol. 39, no. 6, pp. 2023–2032.CrossRefGoogle Scholar
  18. 18.
    Hosch, T., England, L.G., and Napolitano, R.E., Analysis of the high growth-rate transition in Al–Si eutectic solidification [J], J. Mater. Sci., 2009, vol. 44, no. 18, pp. 4892–4899.CrossRefGoogle Scholar
  19. 19.
    Dahle, A.K., Nogita, K., McDonald, S.D., et al., Eutectic modification and microstructure development in Al–Si Alloys [J], Mater. Sci. Eng. A, 2005, vols. 413–414, no. 6, 243–248.CrossRefGoogle Scholar
  20. 20.
    Zuo, M., Jiang, K., and Liu, X., Refinement of hypereutectic Al–Si alloy by a new Al–Zr–P master alloy [J], J. Alloys Compd., 2010, vol. 503, no. 2, pp. L26–L30.CrossRefGoogle Scholar
  21. 21.
    Zuo, M., Liu, X., and Sun, Q., Effects of processing parameters on the refinement of primary Si in A390 alloys with a new Al–Si–P master alloy [J], J. Mater. Sci., 2009, vol. 44, no. 8, pp. 1952–1958.CrossRefGoogle Scholar
  22. 22.
    Xu, R., Zheng, H., Guo, F., et al., Effect of silicon concentration on the dendritic coherency point in Al–Si binary alloys [J], Trans. Indian Inst. Met., 2014, vol. 67, no. 1, pp. 95–100.CrossRefGoogle Scholar
  23. 23.
    Mohanty, P.S. and Gruzleski, J.E., Mechanism of grain refinement in aluminium [J], Acta Metall. Mater., 1995, vol. 43, no. 5, pp. 2001–2012.CrossRefGoogle Scholar
  24. 24.
    Mohanty, P.S. and Gruzleski, J.E., Grain refinement mechanisms of hypoeutectic Al–Si alloys [J], Acta Mater., 1996, vol. 44, no. 9, pp. 3749–3760.CrossRefGoogle Scholar
  25. 25.
    Wang, J., Horsfield, A., Schwingenschl Gl. U., et al., Heterogeneous nucleation of solid Al from the melt by TiB2 and Al3Ti: An ab initio molecular dynamic study [J], Phys. Rev. B, 2010, vol. 82, no. 18, p. 184203.CrossRefGoogle Scholar
  26. 26.
    Chen, Z., Kang, H., Fan, G., et al., Grain refinement of hypoeutectic Al–Si alloys with B [J], Acta Mater., 2016, vol. 120, pp. 168–178.CrossRefGoogle Scholar
  27. 27.
    Bunn, A.M., Schumacher, P., Kearns, M.A., et al., Grain refinement by Al–Ti–B alloys in aluminium melts: a study of the mechanisms of poisoning by zirconium [J], Mater. Sci. Technol., 1999, vol. 15, no. 10, pp. 1115–1123.CrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  • Rongfu Xu
    • 1
  • Qingzhou Sun
    • 1
  • Zhigang Wang
    • 1
  • Yong Xu
    • 1
  • Wencheng Ren
    • 1
  1. 1.School of Materials Science and EngineeringShandong Jianzhu UniversityJinanP.R. China

Personalised recommendations