Russian Journal of Non-Ferrous Metals

, Volume 59, Issue 1, pp 6–15 | Cite as

Physical Methods and Flotation Practice in the Beneficiation of a Low Grade Tungsten-Bearing Scheelite Ore

  • S. Mohammadnejad
  • M. Noaparast
  • S. Hosseini
  • S. Aghazadeh
  • S. Mousavinezhad
  • F. Hosseini
Mineral Processing of Nonferrous Metals
  • 6 Downloads

Abstract

In this paper, beneficiation studies were carried out on a low-grade tungsten-bearing scheelite from Nezam Abad ore with total WO3 grade of 0.11%. Mineralogical studies showed that scheelite is mainly distributed in the ore and gangue minerals include Quartz and Tourmaline. Liberation degree (d80) of tungsten- bearing scheelite is achieved around particles size 150 μm. Gravity concentration, magnetic and flotation methods were conducted by using experimental designs including fractional factorial and response surface methodology. Gravity concentration results indicated that jig separator could not be able to improve tungsten grade in size fraction +600–1750 μm; however, shaking table increased feed grade up to 27.05% with total recovery more than 50% by using four stages concentration in the size range of +125–600 μm. Multi Gravity Separator (MGS) applied on the intermediate products, improved efficiently the total tungsten recovery of the circuit. The results of flotation practice on the pre-concentrated product demonstrated that WO3 grade could be increased up to 9.2% with total recovery of 27.04% by using one stage rougher and four stages of cleaning. Different methods including MGS, wet and dry magnetic separation were considered for upgrading fines from grinding stages; however, only MGS result was satisfactory. The MGS produced a product with WO3 grade 0.64% and total recovery 93%.

Keywords

scheelite gravity concentration flotation magnetic separation MGS design of experiment 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Blewer, R.S., Tungsten and Other Refractory Metals for VLSI Applications, Pittsburg PA: Mater. Res. Soc., 1986.Google Scholar
  2. 2.
    Upadhyaya, A., Processing strategy for consolidating tungsten heavy alloys for ordnance applications, Mater. Chem. Phys., vol. 67, no. 1, pp. 101–110.Google Scholar
  3. 3.
    Hwu, H.H., Chen, J.G., Kourtakis, K., and Lavin, J.G., Potential application of tungsten carbides as electrocatalysts, J. Phys. Chem. B, 2001, vol. 105, no. 41, pp. 10037–10044.CrossRefGoogle Scholar
  4. 4.
    Da-ming, L., Production, application and development of tungsten–copper composites [J], China Tung. Industry, 2004, vol. 5, no. 10, pp. 69–74.Google Scholar
  5. 5.
    El-Mowafy, O., El-Bardawy, W., Lewis, D.W., Shokati, B., Kermalli, J., Soliman, O., Encioni, A., Zawi, R., and Rajwani, F., Intensity of quartz–tungsten–halogen light-curing units in private practice in Toronto, J. Amer. Dent. Ass., 2005, vol. 136, no. 6, pp. 766–773.CrossRefGoogle Scholar
  6. 6.
    Woldman, N.E. and Frick, J.P., Woldman’s Engineering Alloys, ASM Int., 2000.Google Scholar
  7. 7.
    Sudbrack, C.K., Ziebell, T.D., Noebe, R.D., and Seidman, D.N., Effects of tungsten addition on the morphological evolution, spatial correlations and temporal evolution of a model Ni-Al-Cr superalloy, Acta Mater., 2008, vol. 56, no. 3, pp. 448–463.CrossRefGoogle Scholar
  8. 8.
    Makineni, S., Nithin, B., and Chattopadhyay, K., Synthesis of a new tungsten-free γ–γ' cobalt-based superalloy by tuning alloying additions, Acta Mater., 2015, vol. 85, pp. 85–94.CrossRefGoogle Scholar
  9. 9.
    Kosolapova, T.Y., Carbides: Properties, Production, and Applications, Springer, 2012.Google Scholar
  10. 10.
    Wasmi, B.A., Al-Amiery, A.A., Kadhum, A.A.H., and Mohamad, A.B., Novel approach: tungsten oxide nanoparticles as a catalyst for malonic acid ester synthesis via ozonolysis, J. Nanomater., 2014, p. 2.Google Scholar
  11. 11.
    Zhiqing, Z. and Wei, B., Characterization of tungstenbased catalyst used for selective oxidation of cyclopentene to glutaraldehyde, Chin. J. Chem. Eng., 2008, vol. 6, no. 6, pp. 895–900.Google Scholar
  12. 12.
    Erik, L. and Wolf-Dieter, S., Tungsten: Properties, Chemistry, Technology of the Element, Alloys, and Chemical Compounds, New York: Plenum, 1999.Google Scholar
  13. 13.
    Gaur, R.P.S., Modern hydrometallurgical production methods for tungsten, JOM, 2006, vol. 58, no. 9, pp. 45–49.CrossRefGoogle Scholar
  14. 14.
    Martins, J., Lima, J.L., Moreira, A., and Costa, S., Tungsten recovery from alkaline leach solutions as synthetic scheelite, Hydrometallurgy, 2007, vol. 85, no. 2, pp. 110–115.CrossRefGoogle Scholar
  15. 15.
    Burwell, B., Process for recovery of tungsten from scheelite and wolframite ores, Google Patents, 1966.Google Scholar
  16. 16.
    Burwell, B., Method for recovering tungsten values from ore, Google Patents, 1949.Google Scholar
  17. 17.
    Srinivas, K., Sreenivas, T., Natarajan, R., and Padmanabhan, N., Studies on the recovery of tungsten from a composite wolframite–scheelite concentrate, Hydrometallurgy, 2000, vol. 58, no. 1, pp. 43–50.CrossRefGoogle Scholar
  18. 18.
    Zhou., X.-t. and Deng, L.-h., Study on a new gravityflotation-gravity technique for processing the fine scheelite and wolframite ore [J], Mater. Res. Appl., 2008, vol. 3, p. 019.Google Scholar
  19. 19.
    Xu, X.-P., Liang, D.-Y., Yu, L.-X., Lin, R.-X., Zeng, Q.-J., Guan, Z.-G., and Zhang, X.-H., On the mineral processing technique for a large-scaled scheelite mine [J], China Tung. Industry, 2007, vol. 2, p. 005.Google Scholar
  20. 20.
    AC08911055, A. Mineral processing and extractive metallurgy review: an international journal, Taylor & Francis, 1983.Google Scholar
  21. 21.
    Drobnick, J.L. and Lewis, C.J., Process for recovering tungsten values from solution, Google Patents, 1962.Google Scholar
  22. 22.
    Kumar, V. and Pandey, B., Extraction of tungsten from low grade Wolframite Jig concentrate, Met. Mater. Proc., 1995, vol. 7, no. 3, pp. 159–168.Google Scholar
  23. 23.
    Ning, P., Cao, H., and Zhang, Y., Selective extraction and deep removal of tungsten from sodium molybdate solution by primary amine N1923, Separ. Purif. Tech., 2009, vol. 70, no. 1, pp. 27–33.CrossRefGoogle Scholar
  24. 24.
    Stephen, W. and Wang, C., Tungsten Sources, Metallurgy, Properties, and Applications, New York: Plenum–Varanasi, India: DC Agrawal and VJ Menon Baranas Hindi Univ., 1979, vol. 2, s. 2.6, p. 2.7Google Scholar
  25. 25.
    Zhao, Z., Li, J., Wang, S., Li, H., Liu, M., and Sun, P., and Li., Y., Extracting tungsten from scheelite concentrate with caustic soda by autoclaving process, Hydrometallurgy, 2011, vol. 108, no. 1, pp. 152–156.CrossRefGoogle Scholar
  26. 26.
    Dai, Y.-Y., Zhong, H., and Zhong, H.-Y., Recovery of Nb, Ta, W from tungsten residue by acid leaching [J], J. Guilin Univ. Technol., 2008, vol. 2, p. 009.Google Scholar
  27. 27.
    Tungsten extraction and purification process, Google Patents, 1963.Google Scholar
  28. 28.
    John, B.K., Process of recovering tungstic oxide substantially free of molybdenum compounds, Google Patents, 1957.Google Scholar
  29. 29.
    Zhang, Q., Gong, B., Huang, W., and Huang, S., New process for production of high purity ammonium paratungstate from tungsten slimes with high content of impurities, J. Central-South Inst. Min. Metall. (China), 1990, vol. 21, no. 4, pp. 389–396.Google Scholar
  30. 30.
    Zhang, G.-Q., Guan, W.-J., Zhang, Q.-X., Xiao, L.-S., Li, Q.-G., and Cao, Z.-Y., Continuous-running experiment for direct solvent extraction of tungsten from autoclave-soda leaching liquor of scheelite [J], China Tung. Industry, 2009, vol. 24, no. 5, pp. 49–52.Google Scholar
  31. 31.
    Queneau, P.B., Huggins, D.K., and Beckstead, L.W., Autoclave soda digestion of refractory scheelite concentrates, Google Patents, 1982.Google Scholar
  32. 32.
    Queneau, P.B., Huggins, D.K., and Beckstead, L.W., Combined autoclave soda digestion of wolframite and scheelite, Google Patents, 1982.Google Scholar
  33. 33.
    Zhao, Z.-w., Cao, C.-f., and Li, H.-g., Thermodynamics of soda decomposition of scheelite, Chin. J. Nonferrous. Met., 2008, vol. 18, no. 2, p. 356.CrossRefGoogle Scholar
  34. 34.
    Li, H., Liu, M., Sun, P., and Li, Y., Caustic decomposition of scheelite and scheelite–volframite concentrates through mechanical activation, J. Central-South Univ. Technol., 1995, vol. 2, no. 2, pp. 16–20.CrossRefGoogle Scholar
  35. 35.
    Ma, J., Zhu, S.G., Ding, H., and Gu, W., Effects of mechanical activation during the synthesis of tungsten carbide powders by carbothermic reduction of tungsten oxide, in Defect and Diffusion Forum, Trans. Tech., 2011.Google Scholar
  36. 36.
    Wilbur, S., Abadin, H., Fay, M., Yu, D., Tencza, B., Ingerman, L., Klotzbach, J., and James, S., Toxicological Profile for Chromium. Production, Import/Export, Use, and Disposal, Atlanta: ATSDR, 2012.Google Scholar
  37. 37.
    Hedayati Sarab-shahrak, H., Noaparast, M., Shafaei Tonkaboni, S.Z., and Hosseini, S.M., Application of gravity separation for enrichment of South Chah-Palang tungsten ore, Int. J. Min. Geo-Eng., 2016, vol. 50, no. 1, pp. 1–12.Google Scholar
  38. 38.
    Acharyulu, S. and Rao, P.R., An integrated approach to the optimum utilization of national tungsten resources: Technology gaps, Bull. Mater. Sci., 1996, vol. 19, no. 2, pp. 179–199.CrossRefGoogle Scholar
  39. 39.
    Tolun, R., A study on the concentration tests and beneficiation of the Uludağ tungsten ore, Maden Tetkik ve Arama Enstitüsü, 1955.Google Scholar
  40. 40.
    Traore, A., Conil, P., Houot, R., and Save, M., An evaluation of the Mozley MGS for fine particle gravity separation, Miner. Eng., 1995, vol. 8, no. 1, pp. 767–778.CrossRefGoogle Scholar
  41. 41.
    Clemente, D., Newling, P., de Sousa, A.B., LeJeune, G., Barber, S., and Tucker, P., Reprocessing slimes tailings from a tungsten mine, Miner. Eng., 1993, vol. 6, nos. 8–10, pp. 831–839.CrossRefGoogle Scholar
  42. 42.
    Ye, X.-j., Liu, J., and Liu, Z.-I., The experimental flotation study on one kind of low-grade scheelite [J], China Tung. Industry, 2006, vol. 5, p. 005.Google Scholar
  43. 43.
    Elmer, W.G., Tungsten ore flotation, Google Patents, 1945.Google Scholar
  44. 44.
    Leng, W.-h., Zhu, L.-h., and Feng, Q.-m., A review on the flotation of tungsten minerals, Conserv. Utiliz. Miner. Res., 1999, vol. 5, p. 011.Google Scholar
  45. 45.
    Vedova, R. and Grauerholz, N.L., Method for recovering scheelite from tungsten ores by flotation, Google Patents, 1977.Google Scholar
  46. 46.
    Guang-hua, A., Xue-jun, Y., and Xiang-jun, R., The experimental study on scheelite flotation of a tungsten ore in Jiangxi [J], China Tung. Industry, 2009, vol. 4, p. 010.Google Scholar
  47. 47.
    Shiliang, Z.L.D.H.L., Research development of scheelite flotation [J], Modern Min., 2009, vol. 9, p. 007.Google Scholar
  48. 48.
    Qui, L.-N. and Dai, H.-X., Flotation process for scheelite and status quo of its reagents [J], Yunnan Metall., 2008, vol. 5, p. 004.Google Scholar
  49. 49.
    Qing-Jun, Z., Ri-Xiao, L., Zhang, X.-H., and Qiong, C., Study on mineral processing technology of scheelite in north-east China [J], J. Goandong Non-Ferrous Met., 2006, vol. 3, p. 002.Google Scholar
  50. 50.
    Changgen, L. and Yongxin, L., Selective flotation of scheelite from calcium minerals with sodium oleate as a collector and phosphates as modifiers. II. The mechanism of the interaction between phosphate modifiers and minerals, Int. J. Miner. Proc., 1983, vol. 10, no. 3, pp. 219–235.CrossRefGoogle Scholar
  51. 51.
    Agar, G.E., Scheelite flotation process, Google Patents, 1984.Google Scholar
  52. 52.
    Srivastava, J., and Pathak, P., Pre-concentration: a necessary step for upgrading tungsten ore, Int. J. Miner. Proc., 2000, vol. 60, no. 1, pp. 1–8.CrossRefGoogle Scholar
  53. 53.
    Han, Z.-Y., Guan, Z.-G., Lu, Y.-P., and Wang, G.S., Experimental study on recovering a certain tungsten ore using combination collectors [J], Min. Metall. Eng., 2009, vol. 1, p. 015.Google Scholar
  54. 54.
    Zhao, G., Zhong, H., Qiu, X., Wang, S., Gao, Y., Dai, Z., Huang, J., and Liu, G., The DFT study of cyclohexyl hydroxamic acid as a collector in scheelite flotation, Miner. Eng., 2013, vol. 49, pp. 54–60.CrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  • S. Mohammadnejad
    • 1
  • M. Noaparast
    • 1
  • S. Hosseini
    • 1
  • S. Aghazadeh
    • 1
  • S. Mousavinezhad
    • 1
  • F. Hosseini
    • 1
  1. 1.University of TehranTehranIran

Personalised recommendations