Skip to main content
Log in

The Influence of Composition and Heat Treatment on the Phase Composition and Mechanical Properties of ML19 Magnesium Alloy

  • Foundry
  • Published:
Russian Journal of Non-Ferrous Metals Aims and scope Submit manuscript

Abstract

Samples of ML19 magnesium alloy with composition, wt %, (0.1–0.6)Zn–(0.4–1.0)Zr–(1.6–2.3)Nd–(1.4–2.2)Y have been investigated. The influence of Nd, Y, Zn, and Zr on equilibrium phase-transition temperatures and phase composition using Thermo-Calc software is established. The Scheil–Gulliver solidification model is also used. We show the significant liquidus temperature increase if the zirconium content in alloy is higher than (0.8–0.9) wt %. Thus, a higher melting temperature is required (more than 800°C). This is undesirable when melting in a steel crucible. The change in equilibrium fractions of phases at different temperatures in ML19 magnesium alloy with a minimum and maximum amount of alloying elements are calculated. Microstructures of alloys with different amounts of alloying elements in as-cast and heat-treated condition has been studied using scanning electron microscopy (SEM). We investigate the concentration profile of Nd, Y, Zn, and Zr in the dendritic cell of an as-cast alloy. The amount of neodymium and zinc on dendritic cell boundaries increased. A high concentration of yttrium is observed both in the center and on the boundaries of the dendritic cell. A high zirconium concentration is mainly observed in the center of the dendritic cells. A small amount of yttrium is also present in zirconium particles. These particles act as nucleation sites for the magnesium solid solution (Mg) during solidification. The effect of aging temperature (200 and 250°C) on the hardness of the samples after quenching was studied. Aging at 200°C provides a higher hardness. The change in the hardness of quenched samples during aging at 200°C is investigated. Maximum hardness is observed in samples aged for 16–20 h. The two-stage solution heat treatment for 2 h at 400°C and 8 h at 500°C with water quenching and aging at 200°C for 16 h is performed. This heat treatment enables us to get tensile strength 306 ± 8 MPa and yield strength 161 ± 1 MPa with elongation 8.7 ± 1.6%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Friedrich, H.E. and Mordike, B.L., Magnesium Technology: Metallurgy, Design Data, Applications, NewYork: Springer, 2006.

    Google Scholar 

  2. Mordike, B.L. and Ebert, T., Magnesium: propertiesapplications-potential, Mater. Sci. Eng. A, 2001, vol. 302, no. 1, pp. 37–45.

    Article  Google Scholar 

  3. Rokhlin, L.L., Magnesium Alloys Containing Rare Earth Metals: Structure and Properties, London: Taylor & Francis, 2003.

    Google Scholar 

  4. Antion, C., Donnadieu, P., Deschamps, A., Tassin, C., and Pisch A., Hardening precipitation in a Mg–4Y–3RE alloy, Acta Mater., 2003, vol. 51, no. 18, pp. 5335–5348.

    Article  Google Scholar 

  5. Polmear, I.J., Magnesium alloys and applications, Mater. Sci. Technol., 1994, vol. 10, no. 1, pp. 1–16.

    Article  Google Scholar 

  6. Penghuai, F., Liming, P., Haiyan, J., Jianwei, C., and Chunquan, Z., Effects of heat treatments on the microstructures and mechanical properties of Mg–3Nd–0.2Zn–0.4Zr (wt %) alloy, Mater. Sci. Eng. A, 2008, vol. 486, nos. 1–2, pp. 183–192.

    Article  Google Scholar 

  7. Nie, J.F. and Muddle, B.C., Characterisation of strengthening precipitate phases in a Mg–Y–Nd alloy, Acta Mater., 2000, vol. 48, pp. 1691–1703.

    Article  Google Scholar 

  8. Zhao, H.D., Qin, G.W., Ren, Y.P., Pei, W.L., Chen, D., and Guo, Y., The maximum solubility of Y in α-Mg and composition ranges of Mg24Y5–x and Mg2Y1–x intermetallic phases in Mg–Y binary system, J. Alloys Compnd., 2001, vol. 509, no. 3, pp. 627–631.

    Article  Google Scholar 

  9. Chia, T.L., Easton, M.A., Zhu, S.M., Gibson, M.A., Birbilis, N., and Nie, J.F., The effect of alloy composition on the microstructure and tensile properties of binary Mg–rare earth alloys, Intermetallics, 2009, vol. 17, no. 7, pp. 481–490.

    Article  Google Scholar 

  10. Rokhlin, L.L., Dobatkina, T.V., Tarytina, I.E., Timofeev, V.N., and Balakhchi, E.E., Peculiarities of the phase relations in Mg-rich alloys of the Mg–Nd–Y system, J. Alloys Compnd., 2004, vol. 367, nos. 1–2, pp. 17–19.

    Article  Google Scholar 

  11. Mukhina, I.Yu., Duyunova, V.A., Frolov, A.V., and Uridiya, Z.P., Effect of RE alloying on the high-temperature strength of casting magnesium alloys, Metal. Mashinostr., 2014, no. 5, pp. 34–38.

    Google Scholar 

  12. Vinotha, D., Raghukandan, K., Pillai, U.T.S., and Pai, B.C., Grain refining mechanisms in magnesium alloys—An overview, Trans. Indian Inst. Met., 2009, vol. 62, pp. 521–532.

    Article  Google Scholar 

  13. Changjiang, S., Qingyou, H., and Qijie, Z., Review of grain refinement methods for as-cast microstructure of magnesium alloy, China Foundry, 2009, vol. 6, pp. 93–103.

    Google Scholar 

  14. Polmear, I.J., Light Alloys, Oxford: Butterworth–Heinemann, 2005, 4th ed.

    Google Scholar 

  15. Heat Treater’s Guide: Practices and Procedures for Nonferrous Alloys, Chandler, H., Ed., Ohio: ASM International, 1996.

  16. Nie, J.F. and Muddle, B.C., Precipitation in magnesium alloy WE54 during isothermal ageing at 250°C, Scr. Mater., 1999, vol. 40, no. 10, pp. 1089–1094.

    Article  Google Scholar 

  17. Nie, J.F., Effects of precipitate shape and orientation on dispersion strengthening in magnesium alloys, Scr. Mater., 2003, vol. 48, no. 8, pp. 1009–1015.

    Article  Google Scholar 

  18. Mengucci, P., Barucca, G., Riontino, G., Lussana, D., Massazza, M., Ferragut, R., and Hassan, Aly E., Structure evolution of a WE43 Mg alloy submitted to different thermal treatments, Mater. Sci. Eng. A, 2008, vol. 479, nos. 1–2, pp. 37–44.

    Article  Google Scholar 

  19. Kumar, N., Choudhuri, D., Banerjee, R., and Mishra, R.S., Strength and ductility optimization of Mg–Y–Nd–Zr alloy by microstructural design, Int. J. Plast., 2015, vol. 68, pp. 77–97.

    Article  Google Scholar 

  20. Feng, H., Liu, H., Cao, H., Yang, Y., Xu, Y., and Guan, J., Effect of precipitates on mechanical and damping properties of Mg–Zn–Y–Nd alloys, Mater. Sci. Eng. A, 2015, vol. 639, pp. 1–7.

    Article  Google Scholar 

  21. Suzuki, M., Kimura, T., Koike, J., and Maruyama, K., Effects of zinc on creep strength and deformation substructures in Mg–Y alloy, Mater. Sci. Eng. A, 2004, vols. 387–389, pp. 706–709.

    Article  Google Scholar 

  22. Andersson, J.O., Helander, T., Hoglund, L., Shi, P.F., and Sundman, B., Thermo-Calc and DICTRA, computational tools for materials science, CALPHAD, 2002, vol. 26, pp. 273–312.

    Article  Google Scholar 

  23. Thermo-Calc Software TTMG3 Magnesium Alloys Database, version 3, accessed June 1, 2017.

  24. Gulliver, G.H., The quantitative effect of rapid cooling upon the constitution of binary alloys, J. Inst. Met., 1913, vol. 9, pp. 120–157.

    Google Scholar 

  25. Scheil, E., Bemerkungen zur Schichtkristallbildung, Zeitschrift für Metallkunde, 1942, vol. 34, pp. 70–72.

    Google Scholar 

  26. Zhang, H., Fan, J., Zhang, L.WuG., Liu, W., Cui, W., and Feng, S., Effect of heat treatment on microstructure, mechanical properties and fracture behaviors of sand-cast Mg–4Y–3Nd–1Gd–0.2Zn–0.5Zr alloy, Mater. Sci. Eng. A, 2016, vol. 677, pp. 411–420.

    Article  Google Scholar 

  27. Rzychon, T. and Kielbus, A., Microstructure of WE43 casting magnesium alloys, J. Achiev. Mater. Manuf. Eng., 2007, vol. 21, pp. 31–34.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Koltygin.

Additional information

Original Russian Text © A.V. Koltygin, V.E. Bazhenov, N.V. Letyagin, V.D. Belov, 2017, published in Izvestiya Vysshikh Uchebnykh Zavedenii, Tsvetnaya Metallurgiya, 2017, No. 6, pp. 20–30.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koltygin, A.V., Bazhenov, V.E., Letyagin, N.V. et al. The Influence of Composition and Heat Treatment on the Phase Composition and Mechanical Properties of ML19 Magnesium Alloy. Russ. J. Non-ferrous Metals 59, 32–41 (2018). https://doi.org/10.3103/S1067821218010091

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1067821218010091

Keywords

Navigation