Skip to main content
Log in

Combined Effect of Calcium and Silicon on the Phase Composition and Structure of Al–10%Mg Alloy

  • Pressure Treatment of Metals
  • Published:
Russian Journal of Non-Ferrous Metals Aims and scope Submit manuscript

Abstract

Phase transformations in the Al–Ca–Mg–Si system in the region of aluminum–magnesium alloys are investigated using the Thermo-Calc program. The liquidus projection of the quaternary system is constructed with a Mg content of 10% and it is shown that phases Al4Ca, Mg2Si, and Al2CaSi2 can crystallize (in addition to the aluminum solid solution (Al)) depending on the calcium and silicon concentrations. The crystallization character of quaternary alloys is investigated with the help of a polythermal cross section calculated at concentrations of 10% Mg and 84% Al. Based on the analysis of phase transformations occurring in alloys of this section, the presence of the Al–Al2CaSi2–Mg2Si quasi-ternary section in the Al–Ca–Mg–Si system was assumed. Three experimental alloys were considered from a quantitative analysis of the phase composition, notably, Al–10% Ca–10% Mg–2% Si, Al–4% Ca–10% Mg–2% Si, and Al–3% Ca–10% Mg–1% Si. Metallographic investigations and electron-probe microanalysis were performed using a TESCAN Vega 3 scanning electron microscope. Critical temperatures are determined using a DSC Setaram Setsys Evolution differential calorimeter. The experimental results agree well with the calculated data; in particular, a peak at t ~ 450°C is revealed for all alloys in curves of the nonequilibrium solidus and invariant eutectic reaction L → (Al) + Al4Ca + Mg2Si + Al3Mg2. It is established that the structure of the Al–3% Ca–10% Mg–1% Si alloy is closest to the eutectic alloy. It is no worse that the AMg10 alloy in regards to density and corrosion resistance and even surpasses it in hardness, which allows us to consider this alloy as the basis for the development of a new cast material: “natural composites.”

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Zolotorevskii, V.S. and Belov, N.A., Metallovedenie liteinykh aluminievykh splavov (Physical Metallurgy of Cast Aluminum Alloys), Moscow: MISiS, 2005.

    Google Scholar 

  2. Kaufman, J.G. and Rooy, E.L., Aluminum Alloy Castings: Properties, Processes, and Applications, Materials Park: ASM International, 2004.

    Google Scholar 

  3. Nagaumi, H., Suvanchai, P., Okane, T., and Umeda, T., Mechanical properties of high strength Al–Mg–Si alloy during solidification, Mater. Trans., 2006, vol. 47, no. 12, pp. 2918–2924.

    Article  Google Scholar 

  4. Ji, S., Watson, D., Fan, Z., and White, M., Development of a super ductile diecast Al–Mg–Si alloy, Mater. Sci. Eng. A, 2012, vol. 556, pp. 824–833.

    Article  Google Scholar 

  5. Roven, H.J., Liu, M., and Werenskiold, J.C., Dynamic precipitation during severe plastic deformation of an Al–Mg–Si aluminium alloy, Mater. Sci. Eng. A, 2008, vol. 483–484, nos. 1–2, pp. 54–58.

    Article  Google Scholar 

  6. Cerri, E. and Leo, P., Influence of severe plastic deformation on aging of Al–Mg–Si alloys, Mater. Sci. Eng. A, 2005, vol. 410–411, pp. 226–229.

    Article  Google Scholar 

  7. Mondolfo, L.F., Aluminum Alloys: Structure and Properties, London/Boston: Butterworths, 1976.

    Google Scholar 

  8. Belov, N.A., Fazoviy sostav promishlennih i perspektivnih aluminievih splavov (Phase Composition of Industrial and Promising Aluminum Alloys), Moscow: MISiS, 2010.

    Google Scholar 

  9. Anthony, W.W., Elliot, F.R., and Ball, M.D., Aluminum: Properties and Physical Metallurgy. Reference Book, Hatch, J.E., Ed., Ohio: ASM International, 1984.

    Google Scholar 

  10. Ji, S., Yang, W., Gao, F., Watson, D., and Fan, Z., Effect of iron on the microstructure and mechanical property of Al–Mg–Si–Mn and Al–Mg–Si diecast alloys, Mater. Sci. Eng., 2013, vol. 564, pp. 130–139.

    Article  Google Scholar 

  11. Fatemi-Jahromi, F. and Emamy, M., An investigation into high temperature tensile behavior of hot-extruded Al–15wt%Mg2Si composite with Cu–P addition, Manuf. Sci. Technol., 2015, vol. 3(4), pp. 160–169.

    Google Scholar 

  12. Kim, W.J. and Lee, Y.G., High-strength Mg–Al–Ca alloy with ultrafine grain size sensitive to strain rate, Mater. Sci. Eng. A, 2011, vol. 528, pp. 2062–2066.

    Article  Google Scholar 

  13. Aljarrah, M., Medraj, M., Wang, X., Essadiqi, E., Muntasar, A., and Denes, G., Experimental investiga-tion of the Mg–Al–Ca system, J. Alloys Compd., 2007, vol. 436, pp. 131–141.

    Article  Google Scholar 

  14. Janz, A., Gröbner, J., Cao, H., Zhu, J., Chang, Y.A., and Schmid-Fetzer, R., Thermodynamic modeling of the Mg–Al–Ca system, Acta Mater., 2009, pp. 682–694.

    Google Scholar 

  15. Belov, N., Evtekticheskie shlavy na osnove aluminiya: novye sistemy legirovaniya (Aluminum-Based Eutectic Alloys: New Alloying Systems), Moscow: Ruda i Metalli, 2016.

    Google Scholar 

  16. Kevorkov, D. and Schmid-Fetzer, R., The Al–Ca system. Pt. 1: Experimental investigation of phase equilibria and crystal structure, Z. Metallkd., 2001, Bd. 92(8), pp. 946–952.

    Google Scholar 

  17. Ternary alloys: A comprehensive compendium of evaluated constitutional data and phase diagrams, vol. 3, Petzow, G. and Effenberg, G., Eds., Wiley, 1990.

  18. Database for the Calculation of Phase Diagrams. www.thermocalc.com (access date October 6, 2017).

  19. Kurganova, Yu., Konstruktsionnye metallomatrichnye kompozitsionnye materialy: uchebnoe posobie (Construction Metal-Matrix Composite Materials: Ttextbook), Moscow: Bauman Mos. Gos. Tekh. Univ., 2015.

    Google Scholar 

  20. Belov, N., Perspektivy sozdaniya konstruktsionnykh liteynykh splavov evtekticheskogo tipa na osnove sistemy Al–Ce–Ni (Prospects for the Development of Construction Cast Alloys of the Eutectic Type Based on the Al–Ce–Ni System), Metally, 1996, no. 6, pp. 146–152.

    Google Scholar 

  21. Belov, N., Struktura i mehanicheskie svoistva evtekticheskih kompozitov na osnove sistemy Al–Ce–Cu (Structure and Mechanical Properties of Eutectic Composites Based on the Al–Ce–Cu System), Tsvetn. Met., 2007, no. 2, pp. 91–95.

    Google Scholar 

  22. Kuzmich, Yu.V., Kolesnikova, I.T., Serba, V.I., and Freydin, B., Mechanicheskoe legirovanie (Mechanical alloying), Moscow: Nauka, 2005.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Belov.

Additional information

Original Russian Text © N.A. Belov, E.A. Naumova, V.V. Doroshenko, N.N. Avxentieva, 2017, published in Izvestiya Vysshikh Uchebnykh Zavedenii, Tsvetnaya Metallurgiya, 2017, No. 6, pp. 53–62.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belov, N.A., Naumova, E.A., Doroshenko, V.V. et al. Combined Effect of Calcium and Silicon on the Phase Composition and Structure of Al–10%Mg Alloy. Russ. J. Non-ferrous Metals 59, 67–75 (2018). https://doi.org/10.3103/S1067821218010054

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1067821218010054

Keywords

Navigation