Advertisement

Russian Journal of Non-Ferrous Metals

, Volume 58, Issue 6, pp 614–624 | Cite as

Separation of Yttrium from Aqueous Solution Using Ionic Imprinted Polymers

  • M. A. Zulfikar
  • R. Zarlina
  • Rusnadi
  • N. Handayani
  • A. Alni
  • D. Wahyuningrum
Metallurgy of Rare and Noble Metals
  • 20 Downloads

Abstract

In the present study, yttrium(III) ion imprinted polymers (Y(III)-IIPs) and non-imprinted polymers (and non-Y(III)-IIPs) materials were synthesized. The materials were characterized by FTIR spectroscopy, scanning electron microscopy (SEM)-EDS studies. Characterization by FTIR showed that the IIPs have been successfully synthesized as indicated by the absence of a peak for the alkene functional group at 3000–3300 cm–1. From the FTIR data and SEM-EDS images showed that Y(III) ions have been successfully released from the polymer. The retention properties by batch procedure showed that the adsorption capacity of Y(III)-IIPs was 10.26 mg/g at pH 7 with a contact time of 10 min. Y(III) ions adsorption onto Y(III)-IIPs follows the Langmuir adsorption isotherm with a correlation coefficient of 0.9671, which showed a maximum adsorption capacity value of 14.68 mg/g and follows the Lagergren pseudo-second order kinetics model. The IIPs materials selectivity against other rare earth metals showed a better selectivity than NIPs.

Keywords

adsorption imprinted polymers rare earth elements yttrium Langmuir adsorption isotherm pseudo-second order 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Haque, N., Hughes, A., Lim, S., and Vernon, C., Rare earth elements: Overview of mining, mineralogy, uses, sustainability and environmental impact, Resources, 2014, vol. 3, no. 4, p. 614.CrossRefGoogle Scholar
  2. 2.
    Connelly, N.G., Nomenclature of inorganic chemistry: IUPAC recommendations. The red book. Royal Society of Chemistry, Cambridge, 2005, p. 51.Google Scholar
  3. 3.
    Dinér, P., Yttrium from Ytterby, Nature Chem., 2016, vol. 8, p. 192.CrossRefGoogle Scholar
  4. 4.
    Stacy, A., Badding, J.V., Geselbracht, M.J., Ham, W.K., Holland, G.F., Hoskins, R., et al., High-temperature superconductivity in yttrium-barium-copper oxide: Identification of a copper-rich superconducting phase, J. Am. Chem. Soc., 1987, vol. 109, no. 8, p. 2528.CrossRefGoogle Scholar
  5. 5.
    Wike, J.S., Guyer, C.E., Ramey, D.W., and Phillpis, B.P., Chemistry for commercial scale production of yttrium-90 for medical research, Int. J. Rad. Appl. Instrum. Part A, 1990, vol. 41, no. 9, p. 861.CrossRefGoogle Scholar
  6. 6.
    Panayiotakis, G., Cavouras, D., Kandarakis, I., and Nomicos, C., A study of X-ray luminescence and spectral compatibility of europium-activated yttrium-vanadate (YVO4:Eu) screens for medical imaging applications, Appl. Phys. A, 1996, vol. 62, no. 5, p. 483.CrossRefGoogle Scholar
  7. 7.
    Naumov, A.V., Review of the world market of rareearth metals, Russ. J. Non-Ferrous Met., 2008, vol. 49, no. 1, p. 14.Google Scholar
  8. 8.
    Du, J., Molecular dynamics simulations of the structure and properties of low silica yttrium aluminosilicate glasses, J. Am. Ceram. Soc., 2009, vol. 92, no. 1, p. 87.CrossRefGoogle Scholar
  9. 9.
    Silver, J., Martinez-Rubio, M.I., Irelend, T.G., Fern, G.R., and Withrall, R., The effect of particle morphology and crystallite size on the upconversion luminescence properties of erbium and ytterbium codoped yttrium oxide phosphors, J. Phys. Chem. B, 2001, vol. 105, no. 5, p. 948.CrossRefGoogle Scholar
  10. 10.
    Stewart, D., Induced radioactivity in strontium and yttrium; nuclear isomers in strontium, Phys. Rev., 1939, vol. 56, no. 7, p. 629.CrossRefGoogle Scholar
  11. 11.
    Horwitz, P.A., US Patent 5 368 736, 1994.Google Scholar
  12. 12.
    Minagawa, Y.K., Yttrium purification by solvent extraction, in The Rare Earths in Modern Science and Technology, 1980, p. 139.CrossRefGoogle Scholar
  13. 13.
    Carlson, O.N., Schimid, F.A., and Peterson, D.T., Purification of rare-earth metals by electrotransport, J. Less Common. Met., 1975, vol. 39, no. 2, p. 277.CrossRefGoogle Scholar
  14. 14.
    Minagawa, Y. and Yajima, F., Selective separation of yttrium ions from other rare earth ions using nonequilibrium extraction, Bull. Chem. Soc. Jpn., 1992, vol. 65, no. 1, p. 29.CrossRefGoogle Scholar
  15. 15.
    Hubicki, Z., Hubicka, H., and Olszak, M., Investigations into the separation of nitrate complexes of yttrium(III) from neodymium(III) on anion exchangers of different cross-linking in the system CH3OH–H2O–HNO3, Hydrometallurgy, 1994, vol. 34, no. 3, p. 307.CrossRefGoogle Scholar
  16. 16.
    Zachmann, D.W., Matrix effects in the separation of rare earth elements, scandium, and yttrium and their determination by inductively coupled plasma optical emission spectrometry, Anal. Chem., 1988, vol. 60, no. 5, p. 420.CrossRefGoogle Scholar
  17. 17.
    Brown, C.G. and Sherrington, L.G., Solvent extraction used in industrial separation of rare earths, J. Chem. Technol. Biotechnol., 1979, vol. 29, no. 4, p. 193.CrossRefGoogle Scholar
  18. 18.
    Crock, J.G., Lichte, F.E., Riddle, G.O, and Beech, C.L., Separation and preconcentration of the rare-earth elements and yttrium from geological materials by ionexchange and sequential acid elution, Talanta, 1986, vol. 33, no. 7, p. 601.CrossRefGoogle Scholar
  19. 19.
    Hamaguchi, H., Ohuchi, A., Shimizu, T., Onuma, N., and Kuroda, R., Separation of scandium from yttrium, rare earths, thorium, zirconium, uranium, and other elements by anion exchange chromatography in ammonium sulfate media, Anal. Chem., 1964, vol. 36, no. 12, p. 2304.CrossRefGoogle Scholar
  20. 20.
    Ochsenkühn-Petropulu, M., Lyberopulu, T., and Parissakis, G., Selective separation and determination of scandium from yttrium and lanthanides in red mud by a combined ion exchange/solvent extraction method, Anal. Chim. Acta, 1995, vol. 315, no. 1, p. 231.CrossRefGoogle Scholar
  21. 21.
    Wood, D.J., Elshani, S., Du, H.S., Natale, N.R., and Wai, C.M., Separation of yttrium-90 from strontium-90 by solvent extraction with ionizable crown ethers, Anal. Chem., 1993, vol. 65, no. 10, p. 1350.CrossRefGoogle Scholar
  22. 22.
    Sun, X., Zhao, J., Meng, S., and Li, D., Synergistic extraction and separation of yttrium from heavy rare earths using mixture of sec-octylphenoxy acetic acid and bis (2,4,4-trimethylpentyl) phosphinic acid, Anal. Chim. Acta, 2005, vol. 533, no. 1, p. 83.CrossRefGoogle Scholar
  23. 23.
    Sun, X., Peng, B., Ji, Y., Chen, J., and Li, D., The solid–liquid extraction of yttrium from rare earths by solvent (ionic liquid) impreganated resin coupled with complexing method, Sep. Purif. Technol., 2008, vol. 63, no. 1, p. 61.CrossRefGoogle Scholar
  24. 24.
    Weiss, D., Paukert, T., and Rubeska, I., Determination of rare earth elements and yttrium in rocks by inductively coupled plasma atomic emission spectrometry after separation by organic solvent extraction, J. Anal. At. Spectrom., 1990, vol. 5, no. 5, p. 371.CrossRefGoogle Scholar
  25. 25.
    Sun, Y., Detailed study on simultaneous separation of rare earth elements by capillary electrophoresis, J. Chromatogr. A, 2004, vol. 1048, no. 2, p. 245.CrossRefGoogle Scholar
  26. 26.
    de Gyves, J. and de San Miguel, E.R., Metal ion separations by supported liquid membranes, Ind. Eng. Chem. Res., 1999, vol. 38, no. 6, p. 2182.CrossRefGoogle Scholar
  27. 27.
    Ramakul, P., Supajaroon, T., Prapasawat, T., Pancharoen, U., and Lothongkum, A.W., Synergistic separation of yttrium ions in lanthanide series from rare earths mixture via hollow fiber supported liquid membrane, J. Ind. Eng. Chem., 2009, vol. 15, no. 2, p. 224.CrossRefGoogle Scholar
  28. 28.
    Gaikwad, A.G. and Rajput, A.M., Transport of yttrium metal ions through fibers supported liquid membrane solvent extraction, J. Rare Earths, 2010, vol. 28, no. 1, p. 1.CrossRefGoogle Scholar
  29. 29.
    Moeller, T., Observations on rare earths double sodium sulfate precipitation for separation of the terbium and yttrium earths, Ind. Eng. Chem. Anal. Ed., 1945, vol. 17, no. 1, p. 44.CrossRefGoogle Scholar
  30. 30.
    de Vasconcellos, M.E., da S. Queiroz, C.A., and Abrão, A., Sequential separation of the yttrium-heavy rare earths by fractional hydroxide precipitation, J. Alloys Compounds, 2004, vol. 374, no. 1, p. 405.CrossRefGoogle Scholar
  31. 31.
    Suzuki, T, Itoh, K., Ikeda, A., Aida, M., Ozawa, M., and Fujii Y., Separation of rare earth elements by tertiary pyridine type resin, J. Alloys Compounds, 2006, vol. 408–412, p. 1013.CrossRefGoogle Scholar
  32. 32.
    Tong, J., Clark, D., Hoban, M., and O’Hayre, R., Cost-effective solid-state reactive sintering method for high conductivity proton conducting yttrium-doped barium zirconium ceramics, Solid State Ionics, 2010, vol. 181, no. 11, p. 496.CrossRefGoogle Scholar
  33. 33.
    Rao, P.T., Daniel, S., and Gladis, J.M., Tailored materials for preconcentration or separation of metals by ion-imprinted polymers for solid-phase extraction (IIP-SPE), TrAC Trends in Anal. Chem., 2004, vol. 23, no. 1, p. 28.CrossRefGoogle Scholar
  34. 34.
    Metilda, P., Gladis, J.M., and Rao, T.P., Influence of binary/ternary complex of imprint ion on the preconcentration of uranium(VI) using ion imprinted polymer materials, Anal. Chim. Acta, 2004, vol. 512, no. 1, p. 63.CrossRefGoogle Scholar
  35. 35.
    Otero-Romaní, J., Moreda-Pineiro, A., Bermejo-Barrera, P., and Martin-Esteban, A., Inductively coupled plasma-optical emission spectrometry/mass spectrometry for the determination of Cu, Ni, Pb and Zn in seawater after ionic imprinted polymer based solid phase extraction, Talanta, 2009, vol. 79, no. 3, p. 723.CrossRefGoogle Scholar
  36. 36.
    Arbab-Zavar, M.H., Chamsaz, M., Zohuri, G., and Darroudi, A., Synthesis and characterization of nanopore thallium(III) ion-imprinted polymer as a new sorbent for separation and preconcentration of thallium, J. Hazard. Mater., 2011, vol. 185, no. 1, p. 38.CrossRefGoogle Scholar
  37. 37.
    Markowitz, M.S., US Patent 6310110, 2011.Google Scholar
  38. 38.
    Luo, X., Luo, S., Zhan, Y., Shu, H., Huang, Y., and Tu, X., Novel Cu(II) magnetic ion imprinted materials prepared by surface imprinted technique combined with a sol-gel process, J. Hazard. Mater., 2011, vol. 192, no. 3, p. 949.CrossRefGoogle Scholar
  39. 39.
    Shirvani-Arani, S., Ahmadi, S.J., Bahrami-Samani, A., and Ghannadi-Maragheh, M., Synthesis of nano-pore samarium(III)-imprinted polymer for preconcentrative separation of samarium ions from other lanthanide ions via solid phase extraction, Anal. Chim. Acta, 2008, vol. 623, no. 1, p. 82.CrossRefGoogle Scholar
  40. 40.
    Gao, B., Meng, J., Xu, Y., and Zhang, Y., Preparation of Fe(III) ion surface-imprinted material for removing Fe(III) impurity from lanthanide ion solutions, J. Ind. Eng. Chem., 2015, vol. 24, p. 351.CrossRefGoogle Scholar
  41. 41.
    Daniel, S., Gladis, J.M., and Rao, T.P., Synthesis of imprinted polymer material with palladium ion nanopores and its analytical application, Anal. Chim. Acta, 2003, vol. 488, no. 2, p. 173.CrossRefGoogle Scholar
  42. 42.
    Saraji, M. and Yousefi, H., Selective solid-phase extraction of Ni(II) by an ion-imprinted polymer from water samples, J. Hazard. Mater., 2009, vol. 167, no. 1, p. 1152.CrossRefGoogle Scholar
  43. 43.
    Prasad, K., Kala, R., Rao, T.P, and Naidu, G.R.K., Ion imprinted polymer based ion-selective electrode for the trace determination of dysprosium(III) ions, Anal. Chim. Acta, 2006, vol. 566, no. 1, p. 69.CrossRefGoogle Scholar
  44. 44.
    Kala, R., Biju, V.M., and Rao, T.P., Synthesis, characterization, and analytical applications of erbium(III) ion imprinted polymer particles prepared via γ-irradiation with different functional and crosslinking monomers, Anal. Chim. Acta, 2005, vol. 549, no. 1, p. 51.CrossRefGoogle Scholar
  45. 45.
    Guo, J., Cai, J., and Su, Q., Ion imprinted polymer particles of neodymium: synthesis, characterization and selective recognition, J. Rare Earths, 2009, vol. 27, no. 1, p. 22.CrossRefGoogle Scholar
  46. 46.
    Krishna, P.G., Gladis, J.M., Rao, T.P., and Naidu, G.R., Selective recognition of neodymium(III) using ion imprinted polymer particles, J. Mol. Recognit., 2005, vol. 18, no. 1, p. 109.CrossRefGoogle Scholar
  47. 47.
    Biju, V.M., Gladis J.M., and Rao, T.P., Ion imprinted polymer particles: synthesis, characterization and dysprosium ion uptake properties suitable for analytical applications, Analytica Chim. Acta, 2003, vol. 478, p. 43.CrossRefGoogle Scholar
  48. 48.
    Lide, D.R., CRC Handbook of Chemistry and Physics, New York: CRC Press, 2007, p. 1363.Google Scholar
  49. 49.
    Fish, R.H., Molecular and ion recognition with imprinted polymers, in ACS Symposium, Series 703, Bastsch, R.A. and Maeda, M., Eds., Washington, DC: American Chemical Society, 1998, p. 238.Google Scholar
  50. 50.
    Vigneau, O., Pinel, C., and Lemaire, M., Solid-liquid separation of lanthanide/lanthanide and lanthanide/actinide using ionic imprinted polymer based on a DTPA derivative, Chem. Lett., 2002, vol. 2, p. 202.CrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2017

Authors and Affiliations

  • M. A. Zulfikar
    • 1
  • R. Zarlina
    • 1
  • Rusnadi
    • 1
  • N. Handayani
    • 1
  • A. Alni
    • 2
  • D. Wahyuningrum
    • 2
  1. 1.Analytical Chemistry Research GroupInstitut Teknologi BandungBandungIndonesia
  2. 2.Organic Chemistry Research GroupInstitut Teknologi BandungBandungIndonesia

Personalised recommendations