Skip to main content
Log in

Separation of Yttrium from Aqueous Solution Using Ionic Imprinted Polymers

  • Metallurgy of Rare and Noble Metals
  • Published:
Russian Journal of Non-Ferrous Metals Aims and scope Submit manuscript

Abstract

In the present study, yttrium(III) ion imprinted polymers (Y(III)-IIPs) and non-imprinted polymers (and non-Y(III)-IIPs) materials were synthesized. The materials were characterized by FTIR spectroscopy, scanning electron microscopy (SEM)-EDS studies. Characterization by FTIR showed that the IIPs have been successfully synthesized as indicated by the absence of a peak for the alkene functional group at 3000–3300 cm–1. From the FTIR data and SEM-EDS images showed that Y(III) ions have been successfully released from the polymer. The retention properties by batch procedure showed that the adsorption capacity of Y(III)-IIPs was 10.26 mg/g at pH 7 with a contact time of 10 min. Y(III) ions adsorption onto Y(III)-IIPs follows the Langmuir adsorption isotherm with a correlation coefficient of 0.9671, which showed a maximum adsorption capacity value of 14.68 mg/g and follows the Lagergren pseudo-second order kinetics model. The IIPs materials selectivity against other rare earth metals showed a better selectivity than NIPs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Haque, N., Hughes, A., Lim, S., and Vernon, C., Rare earth elements: Overview of mining, mineralogy, uses, sustainability and environmental impact, Resources, 2014, vol. 3, no. 4, p. 614.

    Article  Google Scholar 

  2. Connelly, N.G., Nomenclature of inorganic chemistry: IUPAC recommendations. The red book. Royal Society of Chemistry, Cambridge, 2005, p. 51.

    Google Scholar 

  3. Dinér, P., Yttrium from Ytterby, Nature Chem., 2016, vol. 8, p. 192.

    Article  Google Scholar 

  4. Stacy, A., Badding, J.V., Geselbracht, M.J., Ham, W.K., Holland, G.F., Hoskins, R., et al., High-temperature superconductivity in yttrium-barium-copper oxide: Identification of a copper-rich superconducting phase, J. Am. Chem. Soc., 1987, vol. 109, no. 8, p. 2528.

    Article  Google Scholar 

  5. Wike, J.S., Guyer, C.E., Ramey, D.W., and Phillpis, B.P., Chemistry for commercial scale production of yttrium-90 for medical research, Int. J. Rad. Appl. Instrum. Part A, 1990, vol. 41, no. 9, p. 861.

    Article  Google Scholar 

  6. Panayiotakis, G., Cavouras, D., Kandarakis, I., and Nomicos, C., A study of X-ray luminescence and spectral compatibility of europium-activated yttrium-vanadate (YVO4:Eu) screens for medical imaging applications, Appl. Phys. A, 1996, vol. 62, no. 5, p. 483.

    Article  Google Scholar 

  7. Naumov, A.V., Review of the world market of rareearth metals, Russ. J. Non-Ferrous Met., 2008, vol. 49, no. 1, p. 14.

    Google Scholar 

  8. Du, J., Molecular dynamics simulations of the structure and properties of low silica yttrium aluminosilicate glasses, J. Am. Ceram. Soc., 2009, vol. 92, no. 1, p. 87.

    Article  Google Scholar 

  9. Silver, J., Martinez-Rubio, M.I., Irelend, T.G., Fern, G.R., and Withrall, R., The effect of particle morphology and crystallite size on the upconversion luminescence properties of erbium and ytterbium codoped yttrium oxide phosphors, J. Phys. Chem. B, 2001, vol. 105, no. 5, p. 948.

    Article  Google Scholar 

  10. Stewart, D., Induced radioactivity in strontium and yttrium; nuclear isomers in strontium, Phys. Rev., 1939, vol. 56, no. 7, p. 629.

    Article  Google Scholar 

  11. Horwitz, P.A., US Patent 5 368 736, 1994.

  12. Minagawa, Y.K., Yttrium purification by solvent extraction, in The Rare Earths in Modern Science and Technology, 1980, p. 139.

    Chapter  Google Scholar 

  13. Carlson, O.N., Schimid, F.A., and Peterson, D.T., Purification of rare-earth metals by electrotransport, J. Less Common. Met., 1975, vol. 39, no. 2, p. 277.

    Article  Google Scholar 

  14. Minagawa, Y. and Yajima, F., Selective separation of yttrium ions from other rare earth ions using nonequilibrium extraction, Bull. Chem. Soc. Jpn., 1992, vol. 65, no. 1, p. 29.

    Article  Google Scholar 

  15. Hubicki, Z., Hubicka, H., and Olszak, M., Investigations into the separation of nitrate complexes of yttrium(III) from neodymium(III) on anion exchangers of different cross-linking in the system CH3OH–H2O–HNO3, Hydrometallurgy, 1994, vol. 34, no. 3, p. 307.

    Article  Google Scholar 

  16. Zachmann, D.W., Matrix effects in the separation of rare earth elements, scandium, and yttrium and their determination by inductively coupled plasma optical emission spectrometry, Anal. Chem., 1988, vol. 60, no. 5, p. 420.

    Article  Google Scholar 

  17. Brown, C.G. and Sherrington, L.G., Solvent extraction used in industrial separation of rare earths, J. Chem. Technol. Biotechnol., 1979, vol. 29, no. 4, p. 193.

    Article  Google Scholar 

  18. Crock, J.G., Lichte, F.E., Riddle, G.O, and Beech, C.L., Separation and preconcentration of the rare-earth elements and yttrium from geological materials by ionexchange and sequential acid elution, Talanta, 1986, vol. 33, no. 7, p. 601.

    Article  Google Scholar 

  19. Hamaguchi, H., Ohuchi, A., Shimizu, T., Onuma, N., and Kuroda, R., Separation of scandium from yttrium, rare earths, thorium, zirconium, uranium, and other elements by anion exchange chromatography in ammonium sulfate media, Anal. Chem., 1964, vol. 36, no. 12, p. 2304.

    Article  Google Scholar 

  20. Ochsenkühn-Petropulu, M., Lyberopulu, T., and Parissakis, G., Selective separation and determination of scandium from yttrium and lanthanides in red mud by a combined ion exchange/solvent extraction method, Anal. Chim. Acta, 1995, vol. 315, no. 1, p. 231.

    Article  Google Scholar 

  21. Wood, D.J., Elshani, S., Du, H.S., Natale, N.R., and Wai, C.M., Separation of yttrium-90 from strontium-90 by solvent extraction with ionizable crown ethers, Anal. Chem., 1993, vol. 65, no. 10, p. 1350.

    Article  Google Scholar 

  22. Sun, X., Zhao, J., Meng, S., and Li, D., Synergistic extraction and separation of yttrium from heavy rare earths using mixture of sec-octylphenoxy acetic acid and bis (2,4,4-trimethylpentyl) phosphinic acid, Anal. Chim. Acta, 2005, vol. 533, no. 1, p. 83.

    Article  Google Scholar 

  23. Sun, X., Peng, B., Ji, Y., Chen, J., and Li, D., The solid–liquid extraction of yttrium from rare earths by solvent (ionic liquid) impreganated resin coupled with complexing method, Sep. Purif. Technol., 2008, vol. 63, no. 1, p. 61.

    Article  Google Scholar 

  24. Weiss, D., Paukert, T., and Rubeska, I., Determination of rare earth elements and yttrium in rocks by inductively coupled plasma atomic emission spectrometry after separation by organic solvent extraction, J. Anal. At. Spectrom., 1990, vol. 5, no. 5, p. 371.

    Article  Google Scholar 

  25. Sun, Y., Detailed study on simultaneous separation of rare earth elements by capillary electrophoresis, J. Chromatogr. A, 2004, vol. 1048, no. 2, p. 245.

    Article  Google Scholar 

  26. de Gyves, J. and de San Miguel, E.R., Metal ion separations by supported liquid membranes, Ind. Eng. Chem. Res., 1999, vol. 38, no. 6, p. 2182.

    Article  Google Scholar 

  27. Ramakul, P., Supajaroon, T., Prapasawat, T., Pancharoen, U., and Lothongkum, A.W., Synergistic separation of yttrium ions in lanthanide series from rare earths mixture via hollow fiber supported liquid membrane, J. Ind. Eng. Chem., 2009, vol. 15, no. 2, p. 224.

    Article  Google Scholar 

  28. Gaikwad, A.G. and Rajput, A.M., Transport of yttrium metal ions through fibers supported liquid membrane solvent extraction, J. Rare Earths, 2010, vol. 28, no. 1, p. 1.

    Article  Google Scholar 

  29. Moeller, T., Observations on rare earths double sodium sulfate precipitation for separation of the terbium and yttrium earths, Ind. Eng. Chem. Anal. Ed., 1945, vol. 17, no. 1, p. 44.

    Article  Google Scholar 

  30. de Vasconcellos, M.E., da S. Queiroz, C.A., and Abrão, A., Sequential separation of the yttrium-heavy rare earths by fractional hydroxide precipitation, J. Alloys Compounds, 2004, vol. 374, no. 1, p. 405.

    Article  Google Scholar 

  31. Suzuki, T, Itoh, K., Ikeda, A., Aida, M., Ozawa, M., and Fujii Y., Separation of rare earth elements by tertiary pyridine type resin, J. Alloys Compounds, 2006, vol. 408–412, p. 1013.

    Article  Google Scholar 

  32. Tong, J., Clark, D., Hoban, M., and O’Hayre, R., Cost-effective solid-state reactive sintering method for high conductivity proton conducting yttrium-doped barium zirconium ceramics, Solid State Ionics, 2010, vol. 181, no. 11, p. 496.

    Article  Google Scholar 

  33. Rao, P.T., Daniel, S., and Gladis, J.M., Tailored materials for preconcentration or separation of metals by ion-imprinted polymers for solid-phase extraction (IIP-SPE), TrAC Trends in Anal. Chem., 2004, vol. 23, no. 1, p. 28.

    Article  Google Scholar 

  34. Metilda, P., Gladis, J.M., and Rao, T.P., Influence of binary/ternary complex of imprint ion on the preconcentration of uranium(VI) using ion imprinted polymer materials, Anal. Chim. Acta, 2004, vol. 512, no. 1, p. 63.

    Article  Google Scholar 

  35. Otero-Romaní, J., Moreda-Pineiro, A., Bermejo-Barrera, P., and Martin-Esteban, A., Inductively coupled plasma-optical emission spectrometry/mass spectrometry for the determination of Cu, Ni, Pb and Zn in seawater after ionic imprinted polymer based solid phase extraction, Talanta, 2009, vol. 79, no. 3, p. 723.

    Article  Google Scholar 

  36. Arbab-Zavar, M.H., Chamsaz, M., Zohuri, G., and Darroudi, A., Synthesis and characterization of nanopore thallium(III) ion-imprinted polymer as a new sorbent for separation and preconcentration of thallium, J. Hazard. Mater., 2011, vol. 185, no. 1, p. 38.

    Article  Google Scholar 

  37. Markowitz, M.S., US Patent 6310110, 2011.

    Google Scholar 

  38. Luo, X., Luo, S., Zhan, Y., Shu, H., Huang, Y., and Tu, X., Novel Cu(II) magnetic ion imprinted materials prepared by surface imprinted technique combined with a sol-gel process, J. Hazard. Mater., 2011, vol. 192, no. 3, p. 949.

    Article  Google Scholar 

  39. Shirvani-Arani, S., Ahmadi, S.J., Bahrami-Samani, A., and Ghannadi-Maragheh, M., Synthesis of nano-pore samarium(III)-imprinted polymer for preconcentrative separation of samarium ions from other lanthanide ions via solid phase extraction, Anal. Chim. Acta, 2008, vol. 623, no. 1, p. 82.

    Article  Google Scholar 

  40. Gao, B., Meng, J., Xu, Y., and Zhang, Y., Preparation of Fe(III) ion surface-imprinted material for removing Fe(III) impurity from lanthanide ion solutions, J. Ind. Eng. Chem., 2015, vol. 24, p. 351.

    Article  Google Scholar 

  41. Daniel, S., Gladis, J.M., and Rao, T.P., Synthesis of imprinted polymer material with palladium ion nanopores and its analytical application, Anal. Chim. Acta, 2003, vol. 488, no. 2, p. 173.

    Article  Google Scholar 

  42. Saraji, M. and Yousefi, H., Selective solid-phase extraction of Ni(II) by an ion-imprinted polymer from water samples, J. Hazard. Mater., 2009, vol. 167, no. 1, p. 1152.

    Article  Google Scholar 

  43. Prasad, K., Kala, R., Rao, T.P, and Naidu, G.R.K., Ion imprinted polymer based ion-selective electrode for the trace determination of dysprosium(III) ions, Anal. Chim. Acta, 2006, vol. 566, no. 1, p. 69.

    Article  Google Scholar 

  44. Kala, R., Biju, V.M., and Rao, T.P., Synthesis, characterization, and analytical applications of erbium(III) ion imprinted polymer particles prepared via γ-irradiation with different functional and crosslinking monomers, Anal. Chim. Acta, 2005, vol. 549, no. 1, p. 51.

    Article  Google Scholar 

  45. Guo, J., Cai, J., and Su, Q., Ion imprinted polymer particles of neodymium: synthesis, characterization and selective recognition, J. Rare Earths, 2009, vol. 27, no. 1, p. 22.

    Article  Google Scholar 

  46. Krishna, P.G., Gladis, J.M., Rao, T.P., and Naidu, G.R., Selective recognition of neodymium(III) using ion imprinted polymer particles, J. Mol. Recognit., 2005, vol. 18, no. 1, p. 109.

    Article  Google Scholar 

  47. Biju, V.M., Gladis J.M., and Rao, T.P., Ion imprinted polymer particles: synthesis, characterization and dysprosium ion uptake properties suitable for analytical applications, Analytica Chim. Acta, 2003, vol. 478, p. 43.

    Article  Google Scholar 

  48. Lide, D.R., CRC Handbook of Chemistry and Physics, New York: CRC Press, 2007, p. 1363.

    Google Scholar 

  49. Fish, R.H., Molecular and ion recognition with imprinted polymers, in ACS Symposium, Series 703, Bastsch, R.A. and Maeda, M., Eds., Washington, DC: American Chemical Society, 1998, p. 238.

    Google Scholar 

  50. Vigneau, O., Pinel, C., and Lemaire, M., Solid-liquid separation of lanthanide/lanthanide and lanthanide/actinide using ionic imprinted polymer based on a DTPA derivative, Chem. Lett., 2002, vol. 2, p. 202.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Zulfikar.

Additional information

The article is published in the original.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zulfikar, M.A., Zarlina, R., Rusnadi et al. Separation of Yttrium from Aqueous Solution Using Ionic Imprinted Polymers. Russ. J. Non-ferrous Metals 58, 614–624 (2017). https://doi.org/10.3103/S1067821217060189

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1067821217060189

Keywords

Navigation