Advertisement

Russian Journal of Non-Ferrous Metals

, Volume 58, Issue 6, pp 678–683 | Cite as

Evaluation of Thermal Stability of Multilayered Nanostructured Coatings Based on Analysis of Diffusion Mobility of Components of the Layers

  • A. O. Volkhonskii
  • I. V. Blinkov
  • Yu. V. Levinsky
  • E. A. Skryleva
Nanostructured Materials and Functional Coatings
  • 12 Downloads

Abstract

The thermal stability of multilayered nanostructured coatings is evaluated by analyzing the diffusion mobility of layer components. The possibility of increasing the thermal stability of multilayered coatings based on mutually soluble Ti–Al–N and Cr–N layers due to the introduction of an additional barrier layer based on Zr–N into a multilayered nanostructure is investigated in detail. Calculated diffusivities of basic metallic elements of the coating into corresponding nitride layers upon heating in a temperature range of 800–1000°C evidence the absence of noticeable diffusion spread of layer boundaries in the presence of the Zr–N-based barrier layer. For example, their values lower upon its introduction (it is found at t = 1000°C, cm2/s: DCr/TiN = 5 × 10–17, Dcr/ZrN = 2 × 1018, \({D_{Ti/C{r_2}N}}\) = 9 × 10–18, and DTi/ZrN = 3 × 10–18). The physicomechanical properties of coatings do not vary upon their vacuum annealing at t < 900°C; however, they noticeably lower with a further increase in temperature due to the degradation of a multilayered coating structure during annealing.

Keywords

thermal stability nanostructured coating diffusion coefficient multilayer structure nitride 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Antsiferov V.N., Kameneva A.L., and Pimenova N.V., Study of the structure and formation of nanosized ionplasma Ti–Zr–N, Ti–Al–N, Ti–Zr–O–N, Ti–Al–O–N, and Ti–B–Si–N coatings, in: Tonkie plenki v elektronike: Materialy XIII Mezhdunarodnoi nauchnotekhnicheskoi konferentsii (Thin Films in Electronics: Proc. XIII Int. Scientific and Technical Conf.), Moscow: Mos. Gos. Tekh. Univ., 2007, pp. 328–335.Google Scholar
  2. 2.
    Antsiferov V.N. and Kameneva A.L., Structure formation (nanostructuring) of films obtained by ion-plasma methods (review). in: Tonkie plenki v elektronike: Materialy XIV Mezhdunarodnoi nauchno-tekhnicheskoi konferentsii (Thin Films in Electronics: Proc. XIV Int. Scientific and Technical Conf.), Moscow: AO TsNITI “Tekhnomash”, 2008, pp. 448–453.Google Scholar
  3. 3.
    Antsiferov, V.N. and Kosogor, S.P., Phase composition and structure of multilayered nanocrystalline coatings based on titanium carbides and nitrides, Metally, 1997, no. 6, pp. 93–96.Google Scholar
  4. 4.
    Antsiferov, V.N. and Kameneva, A.L., Experimental study of the structure of Ti–Zr–N-based multicomponent nanostructured coatings formed by ion-plasma methods, Izv. Vyssh. Uchebn. Zaved. Poroshk. Metall. Funkts. Pokryt., 2007, no. 1, pp. 53–61.Google Scholar
  5. 5.
    Antsiferov, V.N. and Kameneva, A.L., RF Patent 2429311, 2011.Google Scholar
  6. 6.
    Antsiferov, V.N., Kameneva, A.L., Klochkov, A.Yu., and Novikov, R.S., RF Patent 2361013, 2009.Google Scholar
  7. 7.
    Nordin, M., Larsson, M., and Hogmark, S., Mechanical and tribological properties of multilayered PVD TiN/CrN, Wear, 1999, vol. 232, no. 2, pp. 221–225, http://www.sciencedirect. com/science/article/pii/S0043164899001490.CrossRefGoogle Scholar
  8. 8.
    Yaomin Zhou, Reo Asaki, We-Hyo Soe, Ryoichi Yamamoto, Rong Chen, and Akira Iwabuchi, Hardness anomaly, plastic deformation work and fretting wear properties of polycrystalline TiN/CrN multilayers, Wear, 1999, vol. 236, pp. 159–164. http://www.sciencedirect.com/science/article/pii/S0043164899002720/.CrossRefGoogle Scholar
  9. 9.
    Zhang, Z.G., Rapaud, O., Allain, N., Mercs, D., Baraket, M., Dong, C., and Coddet, C., Microstructures and tribological properties of CrN/ZrN nanoscale multilayer coatings, Appl. Surf. Sci., 2009, vol. 255, pp. 4020–4026. http://www.sciencedirect.com/science/ar ticle/pii/S0169433208022423.CrossRefGoogle Scholar
  10. 10.
    Hollek, H., Dvoinye i troinye karbidnye i nitridnye sistemy perekhodnykh metallov (Binary and Ternary Transition Metal Nitride Systems), Levinsky, Yu.V., Ed., Moscow, Metallurgiya, 1988.Google Scholar
  11. 11.
    Barshilia, C. Harish, Jain, Anjana, and Rajam, K.S., Structure, hardness and thermal stability of nanolayered TiN/CrN multilayer coatings, Vacuum, 2004, vol. 72, pp. 241–248, http://www.sciencedirect.com/science/ar ticle/pii/S0042207X03001477.CrossRefGoogle Scholar
  12. 12.
    Kieffer, R. and Ettmayer, P., Recent advances in the knowledge and applications of transition metal nitrides //high temp, High Press., 1974, vol. 6, pp. 253–260.Google Scholar
  13. 13.
    Zeng, X.T., Zhang, S., Sun, C.Q., and Liu, Y.C., Nanometric-layered CrN/TiN thin films mechanical strength and thermal stability, Thin Solid Films, 2003, vol. 424, pp. 99–102. http://www.sciencedirect.com/science/ar ticle/pii/S0040609002009215.CrossRefGoogle Scholar
  14. 14.
    Blinkov, I.V., Volkhonskii, A.O., Kuznetsov, D.V., and Skryleva, E.A., Investigation of structure and phase formation in multilayer coatings and their thermal stability, J. Alloys Compd., 2014, vol. 586, pp. S381–S386. http://www.sciencedirect.com/science/article/pii/S0925838812021731.CrossRefGoogle Scholar
  15. 15.
    Shelekhov, E.V. and Sviridova, T.A., Programs for X-ray analysis of polycrystals, Met. Sci. Heat Treat., 2000, vol. 42, pp. 309–313. http://link.springer.com/article/10.1007%2FBF02471306.CrossRefGoogle Scholar
  16. 16.
    Hui-Wen Chang, Ping-Kang Huang, Jien-Wei Yeh, Andrew Davison, Chun-Huai Tsau, and Chih-Chao Yang, Influence of substrate bias, deposition temperature and post-deposition annealing on the structure and properties of multi-principal-component (AlCrMoSiTi)N coatings, Surf. Coat. Technol., 2008, vol. 202, pp. 3360–3366. http://www.sciencedirect.com/science/article/pii/S0257897207012650.CrossRefGoogle Scholar
  17. 17.
    Biwer, B.M. and Bernasek, S.L., Electronic spectroscopic study of the iron surface and its interaction with oxygen and nitrogen, J. Electron Spectrosc. Relat. Phenom., 1986, vol. 40, pp. 339–351. http://www.sciencedirect.com/science/article/pii/0368204886800445.CrossRefGoogle Scholar
  18. 18.
    Takano, I., Isobe, S., Sasaki, T.A., and Baba, Y., Nitrogenation of various transition metals by- ion implantation, Appl. Surf. Sci., 1989, vol. 37, pp. 25–32. http://www.sciencedirect.com/science/article/pii/0169433289909707.CrossRefGoogle Scholar
  19. 19.
    Nishimura, O., Yabe, K., and Iwaki, M., X-ray photoelectron spectroscopic studies of high-dose nitrogen ion implanted-chromium: a possibility of a standard material for chemical state analysis, J. Electron. Spectrosc. Relat. Phenom., 1989, vol. 49, pp. 335–342. http://www.sciencedirect. com/science/article/pii/0368204889850212.CrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2017

Authors and Affiliations

  • A. O. Volkhonskii
    • 1
  • I. V. Blinkov
    • 1
  • Yu. V. Levinsky
    • 2
  • E. A. Skryleva
    • 1
  1. 1.National University of Science and Technology “MISiS”MoscowRussia
  2. 2.Merzhanov Institute of Structural Macrokinetics and Materials Science Russian Academy of SciencesChernogolovka, Moscow oblastRussia

Personalised recommendations