Russian Journal of Non-Ferrous Metals

, Volume 58, Issue 6, pp 670–677 | Cite as

Fabrication, Structure, and Properties of Porous Materials Made of Titanium Fibers and Wire

  • S. D. Shlyapin
  • M. M. Serov
  • D. E. Gusev
  • L. V. Fedorova
Porous Materials and Biomaterials


The peculiarities of the fabrication, structure, and properties of porous permeable materials made of VT1-0 grade fiber and wire are investigated. It is shown that they are promising for medicine, in particular, for the replacement of bone defects. These materials make it possible to vary the porosity and related physicomechanical properties in wide limits, maximally approaching the characteristics of bone tissue. They provide conditions for its growth into a pore space, are plastic, and are not liable to chipping.


titanium fiber wire compressibility diffusion welding porous material structure properties 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kostornov, A.G., Shevchuk, M.S., and Fedorchenko, I.M., Properties of certain metallic fibers and materials on based on them, Poroshk. Metall., 1975, no. 11, pp. 41–48.Google Scholar
  2. 2.
    Ryan, G., Pandit, A., and Panagiotis Apatsidis, D. Fabrication methods of porous metals for use in orthopaedic applications, Biomaterials, 2006, vol. 27, no. 13, pp. 2651–2670.CrossRefGoogle Scholar
  3. 3.
    Savich, V.V., Kiselev, M.G., and Voronovich, A.I., Sovremennye materialy khirurgicheskikh implantatov i instrumentov (Modern Materials for Surgical Implants and Instruments), Minsk: DoktorDizain, 2004.Google Scholar
  4. 4.
    Kitaoka, K., Yamamoto, H., Tani, T., Hoshuima, K., and Nakaushi, M., Mechanical strength and bone bonding of titanium fiber mesh block for intervertebral fusion, J. Orthop. Sci., 1997, vol. 2, no. 2, pp. 106–113.CrossRefGoogle Scholar
  5. 5.
    Jiang, G. and He, G., Enhancement of porous titanium with entangled wire structure for load-bearing biomedical applications, Mater. Design, 2014, vol. 56, pp. 241–244.CrossRefGoogle Scholar
  6. 6.
    He, G., Liu, P., Tan, Q., and Jiang, G., Flexural and compressive mechanical behaviors of the porous titanium materials with entangles wire structure at different sintering conditions for load-bearing biomedical applications, J. Mech. Behav. Biomed. Mater., 2013, vol. 28, pp. 309–319.CrossRefGoogle Scholar
  7. 7.
    Andani, M.T., Moghaddam, N.S., Haberland, C., and Dean, D., Metals for implants. Part 1. Powder metallurgy and implant rendering, Acta Biomater., 2014, vol. 10, pp. 4058–4070.CrossRefGoogle Scholar
  8. 8.
    Galante, J.O., Rostoker, W., and Lueck, R., Sintered fiber metal composites as a basis for attachment of implants to bone, J. Bone Joint Surg., 1971, vol. 53A, no. 1, pp. 101–114.CrossRefGoogle Scholar
  9. 9.
    Stangl, R., Rinne, B., Kastl, S., and Hendrich, C., The influence of pore geometry in Ti-implants—a cell culture investigation, Eur. Cells Mater., 2001, vol. 2, pp. 1–9.CrossRefGoogle Scholar
  10. 10.
    Gradzka-Dahlke, Malgorzata, Dabrowski, Jan R., and Dabrowski, B., An overview on the usage of the powder metallurgy method for surgical implants production, J. Vibroeng., 2006, vol. 8, no. 2, pp. 11–16.Google Scholar
  11. 11.
    Vityaz, P.A., Kaptsevich, V.M., Kostornov, A.G., Georgiev, V.P., and Sheleg, V.K., Formirovanie struktury i svoistv poristykh materialov (Porous Structure Formation and Properties of Powder Materials), Moscow: Metallurgiya, 1993.Google Scholar
  12. 12.
    Melikyan, M.L. and Itin, V.I., Dynamics of Bone Tissue Mineralization in Porous Titanium and the Mechanical Properties of a Titanium–Bone Tissue Composite, Tech. Phys. Lett., 2002, vol. 28, no. 8, pp. 673–674.CrossRefGoogle Scholar
  13. 13.
    Itin, V.I., Gyunter, V.E., Khodorenko, V.I., and Chobayan, M.L., Strength properties of porous permeable titanium-based materials for stomatology, Poroshk. Metall., 1997, nos. 9–10, pp. 29–33.Google Scholar
  14. 14.
    Berezovskii, V.A. and Kolotilov, N.N., Biofizicheskie kharakteristiki tkanei cheloveka (Biophysical Characteristics of Human Tissues), Kiev: Naukova Dumka, 1990.Google Scholar
  15. 15.
    Antsyferov, V.N., Serov, M.M., Lezhnin, V.P., and Smetkin, A.A., Production, properties and application of rapidly solidified fibers, Izv. Vyssh. Uchebn. Zaved. Poroshk. Metall. Funkts. Pokryt., 2013, no. 1, pp. 55–58.Google Scholar
  16. 16.
    Antsyferov, V. and Serov, M., Manufacturing of a Rapid Solidification Materials and Fibers, Lap Lambert Academic, 2014.Google Scholar
  17. 17.
    Shlyapin, S.D., Kollerov, M.Yu., Gusev, D.E., Senkevich, K.S., and Stepanova, E.A., Fabrication of porous medical implants using diffusion welding, Tekhnol. Legk. Splav., 2007, no. 3, pp. 138–143.Google Scholar
  18. 18.
    Balshin, M.Yu., Nauchnye osnovy poroshkovoi metallurgii i metallurgii volokna (Scientific Foundation of Powder Metallurgy and Fiber Metallurgy), Moscow: Metallurgiya, 1972.Google Scholar
  19. 19.
    Kollerov, M.Yu., Shlyapin, S.D., Senkevich, K.S., Kazantsev, A.A., and Runova, Yu.E., Application of thermal hydrogen treatment in fabrication of porous materials and products from titanium fibers and wires, Metallurg, 2015, no. 3, pp. 61–66.Google Scholar
  20. 20.
    Trifonov, B.V., Nadezhdin, S.V., Kolobov, Yu.R., Khramov, G.V., Serov, M.M., Ligachev, A.E., Oleinik, E.A., and Ovchinnikov, I.V., Regeneration of the bone tissue when filling the defect with the titanium fiber–osteoplastic material composite, Kompoz. Nanostrukt., 2013, no. 2, pp. 59–64.Google Scholar

Copyright information

© Allerton Press, Inc. 2017

Authors and Affiliations

  • S. D. Shlyapin
    • 1
  • M. M. Serov
    • 1
  • D. E. Gusev
    • 1
  • L. V. Fedorova
    • 1
  1. 1.Moscow Aviation Institute (National Research University)MoscowRussia

Personalised recommendations