Russian Journal of Non-Ferrous Metals

, Volume 58, Issue 6, pp 664–669 | Cite as

Surface Composition and Structure of Highly Porous Materials Based Zirconia Stabilized with Yttria

  • S. E. Porozova
  • A. A. Smetkin
  • I. V. Solnyshkov
Porous Materials and Biomaterials
  • 1 Downloads

Abstract

Highly porous permeable materials have been fabricated from zirconia nanopowders stabilized with 2, 3, and 7 mol % yttria by duplicating the polymer matrix. It is shown that the samples are characterized by a complex surface relief formed by sintered powder agglomerates resulted from the agglomeration treatment. It is established by Raman spectroscopy that the phase composition of the material surface is identical to the composition of initial nanopowders and is presented only by the tetragonal modification in all studied cases. It is shown that the deposition of nickel (an active catalytic component) from nickel nitrate solutions or the deposition of metallic nickel on surfaces of ZrO2 stabilized with 3 mol % Y2O3 causes the formation of a monoclinic modification. Only a tetragonal modification is identified on the surface of highly porous ZrO2 samples stabilized with 2 and 7 mol % Y2O3. When using the peak splitting procedure, the shift of the integral peak intensity toward lines characteristic of the monoclinic modification is fixed.

Keywords

zirconia yttria surface phase composition tetragonal modification monoclinic modification Raman spectra nickel 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Studart, André R., Gonzenbach, Urs T., Tervoort, Elena, and Gauckler, Ludwig J., Processing routes to macroporous ceramics: a review, J. Am. Ceram. Soc., 2006, vol. 89, no. 6.Google Scholar
  2. 2.
    Poyasnitel’naya zapiska k dorozhnoi karte “Nanotekhnologii i nanomaterialy dlya razvitiya atomnogo energeticheskogo kompleksa” (Explanatory Note to Roadmap “Nanotechnologies and Nanomaterials for the Development of Nuclear Power Engineering Complex”). http://www.rusnano.com/investment/roadmap/atom (accessed July 30, 2015).Google Scholar
  3. 3.
    Sufizar Ahmad, Marziana Abdoll Latif, Hariati Taib, and Ahmad Fauzi Ismail, Short review: Ceramic foam fabrication techniques for wastewater treatment application, Adv. Mat. Res., 2013, vol. 795, pp. 5–8. http://www.scientific.net/AMR.795.5.Google Scholar
  4. 4.
    Colombo, P., Conventional and novel processing methods for cellular ceramics, Philos. Trans. Royal Soc. A, 2006, vol. 364, pp. 109–124.CrossRefGoogle Scholar
  5. 5.
    Valdevit Lorenzo, Jacobsen Alan J., Greer Julia R., and Carter William B., Protocols for the optimal design of multi-functional cellular structures: from hypersonics to microarchitected materials, J. Am. Ceram. Soc., 2011, vol. 94, pp. 15–34.CrossRefGoogle Scholar
  6. 6.
    Schwartzwalder, Karl and Somers, Arthur V., US Patent 3090094, 1963.Google Scholar
  7. 7.
    Vakifahmetoglu, C., Menapace, I., Hirsch, A., Biasetto, L., Hauser, R., Riedel, R., and Colombo, P., Highly porous macro- and micro-cellular ceramics from a polysilazane precursor, Ceram. Int., 2009, vol. 35, pp. 3281–3290.CrossRefGoogle Scholar
  8. 8.
    Sister, V.G., Ivannikova, E.M., Semin, M.A., and Egorov, A.A., Preparation of highly porous cellular glass materials in the field of pyroxene crystallization, Chem. Petr. Eng., 2011, vol. 46, nos. 9–10, pp. 631–633.CrossRefGoogle Scholar
  9. 9.
    Dobrovol’skii, A.G., Shlikernoe lit’e (Slip Casting), Moscow: Metallurgiya, 1977.Google Scholar
  10. 10.
    Vysokoporistye pronitsaemye materialy (Highly Porous Permeable Materials), Antsiferov, V.N., Ed., Yekaterinburg: Ural Otd. Ross. Akad. Nauk, 2002.Google Scholar
  11. 11.
    Sifontes, A.B., Urbina, M., Fajardo, F., Melo, L., Garcia, L., Mediavilla, M., Carróon, N., Brito, J.L., Hernández, P., Solano, R., Melas, G., and Quintero, A., Preparation of γ-alumina foams of high surface area employing the polyuretane sponge replica method, Latin Am. Appl. Res., 2010, vol. 40, no. 2, pp. 185–191.Google Scholar
  12. 12.
    Antsiferov, V.N., Makarov, A.M., and Ostroushko, A.A., Vysokoporistye pronitsaemye yacheistye materialy—perspektivnye nositeli katalizatorov (Highly Porous Permeable Cellular Materials as Promising Catalysts), Yekaterinburg: Ural Otd. Ross. Akad. Nauk, 2006.Google Scholar
  13. 13.
    Labaki, M., Lamonier, J.-F., Siffert, S., Zhilinskaya, E.A., and Aboukaïs, A., Total oxidation of propene and toluene on copper/yttrium doped zirconia, Kinet. Catal., 2004, vol. 45, no. 2, pp. 227–233.CrossRefGoogle Scholar
  14. 14.
    Ayastuy, J.L., Gurbani, A., González-Marcos, M.P., and Gutiérrez-Ortiz, M.A., Selective CO oxidation in H2 streams on CuO/CexZr1–xO2 catalysts: correlation between activity and low temperature reducibility, Int. J. Hydrogen Energy, 2012, vol. 37, no. 2, pp. 1993–2006.CrossRefGoogle Scholar
  15. 15.
    Antsiferov, V.N., Porozova, S.E., and Kul’met’eva, V.B., Effect of water soluble polymer additives on the phase composition and size of zirconia particles during precipitation from salt solutions, Glass Phys. Chem., 2012, vol. 38, no. 3, pp. 322–326.CrossRefGoogle Scholar
  16. 16.
    Porozova, S.E., Solnyshkov, I.V., Kul’met’eva, V.B., and Shokov, V.O., Features of ZrO2–Y2O3 system nanopowders with a different Y2O3 content, Refract. Ind. Ceram., 2015, vol. 56, no. 4, pp. 333–336.CrossRefGoogle Scholar
  17. 17.
    Galakhov, A.V., Agglomerates in nanopowders and ceramic technology, Refract. Ind. Ceram., 2009, vol. 50, no. 5, pp. 348–353.CrossRefGoogle Scholar
  18. 18.
    Porozova, S.E., Karmanov, V.I., Torsunov, M.F., and Hafizova, R.M., Change in the characteristics of the industrial powder of zirconium oxide and materials based on it by mechanochemical activation, Russ. J. Non-Ferrous Met., 2010, vol. 51, no. 4, pp. 337–341.CrossRefGoogle Scholar
  19. 19.
    Ghosh, A., Suri, A.K., Pandey, M., Thomas, S., Mohan, T.R.R., and Rao, B.T., Nanocrystalline zirconia- yttria system—a Raman study, Mater. Lett., 2006, vol. 60, pp. 1170–1173.CrossRefGoogle Scholar
  20. 20.
    Liang Bo, Ding Chuanxian, Liao Hanlin, and Coddet Christian, Study on structural evolution of nanostructured 3 mol % yttria stabilized zirconia coatings during low temperature ageing, J. Eur. Ceram. Soc., 2009, vol. 29, no. 11, pp. 2267–2273. http://doi 10.1016/j.jeurceramsoc. 2009.01.002.10.1016/j.jeurceramsoc.2009.01.002CrossRefGoogle Scholar
  21. 21.
    Yampolskii, A.M., Mednenie i nikelirovanie (Copper Plating and Nickel Plating), Vyacheslavov, M.P., Ed., Leningrad: Mashinostroenie, 1977, 4th ed.Google Scholar
  22. 22.
    Kumari, Latha, Du, G.H., Li, W.Z., Vennila, R. Selva, Saxena, S.K., and Wang, D.Z., Synthesis, microstructure and optical characterization of zirconium oxide nanostructures, Ceram. Int., 2009, vol. 35, pp. 2401–2408. http://doi 10/1016/j.ceramint.2009.02.007.10/1016/j.ceramint.2009.02.007CrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2017

Authors and Affiliations

  • S. E. Porozova
    • 1
  • A. A. Smetkin
    • 1
  • I. V. Solnyshkov
    • 1
  1. 1.Perm National Research Polytechnic UniversityPermRussia

Personalised recommendations