Russian Journal of Non-Ferrous Metals

, Volume 58, Issue 6, pp 649–655 | Cite as

Investigation into the Structure Formation and Properties of Materials in the Copper–Titanium Disilicide System

  • S. A. Oglezneva
  • M. N. Kachenyuk
  • N. D. Ogleznev
Refractory, Ceramic, and Composite Materials
  • 2 Downloads

Abstract

The structure formation and properties during infiltration, free sintering, and spark-plasma sintering in Cu–(12.5–37.5 vol %) powder materials Ti3SiC2 are investigated by electron microscopy, X-ray phase analysis, and energy-dispersion analysis. The independence of the phase composition of composite materials (CMs) on the sintering method and temperature in a range of 900–1200°C is established. The peculiarities of formation of the CM structure during sintering are the intercalation of silicon from titanium carbosilicide and the formation of a carbon solid solution based on Ti5Si3(C) titanium disilicide, small amounts of titanium carbide, silicon carbide, and TiSi2 silicide. An increase in Ti3SiC2 in the CM certainly lowers electrical conductivity, but considerably increases the hardness, strength, and electroerosion wear resistance of CM electrodes for electroerosion broaching.

Keywords

structure composite material copper titanium carbosilicide sintering SPS infiltration physicomechanical properties 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Eliseev, Yu.S. and Saushkin, B.P., Elektroerozionnaya obrabotka izdelii aviatsionno-kosmicheskoi tekhniki (Electrical Discharge Machining of Aerospace Technique Wares), Moscow: Mos. Gos. Tekh. Univ., 2010.Google Scholar
  2. 2.
    Serebrenitskii, P.P., Sovremennye elektroerozionnye tekhnologii i oborudovanie: Uchebn. Pos. (Modern Electroerosion Technologies and Equipment: Tutorial), St. Petersburg: Balt. Gos. Tekh. Univ., 2007.Google Scholar
  3. 3.
    Czelusniak, T., Amorim, F.L., Higa, C.F., and Lohrengel, A., Development and application of new composite materials as EDM electrodes manufactured via selective laser sintering, Int. J. Adv. Manuf. Technol., 2014, vol. 72, pp. 1503–1512.CrossRefGoogle Scholar
  4. 4.
    Lepakova, O.K., Golobokov, N.N., Kitler, V.D., Shul’pekov, A.M., and Maksimov, Yu.M., RF Patent 2341839, 2008.Google Scholar
  5. 5.
    Barsoum, W., The Mn + iAXn: a new class of solids; thermodynamically stable nanolaminates, Prog. Solid State Chem., 2000, vol. 28, pp. 201–281.CrossRefGoogle Scholar
  6. 6.
    Kisi, E.H. and Crossley, A.A., Structure and crystal chemistry of Ti3SiC2, J. Phys. Chem. Solids, 1998, vol. 59, no. 9, pp. 1437–1443.CrossRefGoogle Scholar
  7. 7.
    Tungwai, L. Ngai, Wei Zheng, and Yuanyuan Li, Effect of sintering temperature on the preparation of Cu–Ti3SiC2 metal matrix composite, Prog. Natur. Sci.: Mater. Int., 2013, vol. 23, no. 1, pp. 70–76.CrossRefGoogle Scholar
  8. 8.
    Nickl, J.J., Schweitzer, K.K., and Luxenberg, P., Gasphasenabscheidung im systeme Ti–C–Si, J. Les. Common Met., 1972, vol. 26, pp. 382–389.Google Scholar
  9. 9.
    International Center for Diffraction Data. PDF-2. The Powder Diffraction Lines. 2001. Lic. no. 81200030.Google Scholar
  10. 10.
    Ida Kero, Ti3SiC2. Synthesis by powder metallurgical methods. In: Licentiate Thesis. Luleå, Sweden: Luleå Univ. Technol., 2007, no. 34, p. 74.Google Scholar
  11. 11.
    Yanchun Zhou and Wanli Gu, Chemical reaction and stability of Ti3SiC2 in Cu during high-temperature processing of Cu/Ti3SiC2 composites, Z. Metallkd., 2004, vol. 95, no. 1, pp. 50–56.CrossRefGoogle Scholar
  12. 12.
    Tungwai L. Ngai, Wei Zheng, and Yuanyuan Li, Effect of sintering temperature on the preparation of Cu–Ti3SiC2 metal matrix composite, Prog. Natur. Sci.: Mater. Int., 2013, vol. 23, no. (1), pp. 70–76.Google Scholar
  13. 13.
    Shukhardin, S.V., Dvoinye i mnogokomponentnye sistemy medi (Binary and Multicomponent Copper Systems), Moscow: Nauka, 1979.Google Scholar
  14. 14.
    Nadutkin, A.V., Investigation into the Synthesis Processes of Ti3SiC2 and Formation of Construction Ceramics on Its Base, Cand. Sci. (Eng.) Dissertation, Syktyvkar, Inst. Khim. Komi Nauch. Tsentr Ural Otd. Ross. Akad. Nauk, 2007.Google Scholar
  15. 15.
    Kosolapova, T.Ya., Karbidy (Carbides), Moscow: Metallurgiya, 1968.Google Scholar

Copyright information

© Allerton Press, Inc. 2017

Authors and Affiliations

  • S. A. Oglezneva
    • 1
  • M. N. Kachenyuk
    • 1
  • N. D. Ogleznev
    • 1
  1. 1.Perm National Research Polytechnic UniversityPermRussia

Personalised recommendations