Russian Journal of Non-Ferrous Metals

, Volume 58, Issue 5, pp 516–524 | Cite as

Corrosion behavior on the different zones of AA2014 welded aluminum alloy by AA5554 filler aluminum alloy with TIG process: Before and after solution heat treatments followed by ageing

  • Nacer Zazi
  • Madjid Ifires
  • Sofiane Mehala
  • Jean Paul Chopart
Corrosion and Protection of Metals


In this work, we have studied the effects of solution heat treatment followed by ageing on the corrosion behavior of AA2014 aluminum alloy welded by AA5554 aluminum alloy. Two samples are then analyzed, in the first case the solution heat treatment is followed by quenching and natural ageing of 90 days (sample 1), and in the second one, the solution heat treatment is followed by quenching and artificial ageing of twelve hours at 190°C (sample 2). The principal observations can be summarized as: evaporation of magnesium in fusion zone, and diffusion of magnesium and copper from the heat affected zone to the fusion zone were identified. Solution heat treatment, quenching and 90 days of natural ageing leads to a uniform corrosion in the heat affected zone and in the fusion one, when the material is immersed for ten seconds in Keller reagent solution. After immersion in 0.3% NaCl chloride solution, and after solution treatment and quenching, we observed that applied artificial ageing at 190°C causes localized corrosion surrounding precipitates and then develops uniform corrosion in all zones, particularly in the fusion one. Finally, it is noted that the surface of different zones became nobler after applying solution heat treatment followed by natural ageing.


AA2014 aluminum alloy AA5554 aluminum alloy corrosion solution heat treatment ageing welding 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Nakai, M. and Eto, T., New aspects of development of high strength aluminum alloys for aerospace applications, Mater. Sci. Eng. A, 2000, vol. 285, pp. 62–68.CrossRefGoogle Scholar
  2. 2.
    Zainul Huda, Nur Iskandar Taib, and Tuan Zahariniea, Characterization of 2024-T3: An aerospace aluminum alloy, Mater. Chem. Phys., 2009, vol. 113, pp. 515–517.CrossRefGoogle Scholar
  3. 3.
    Cubberly, W.H. et al., Metals Handbook, vol. 2: Properties and Selection: Nonferrous Alloys and Pure Metals, 10th ed., Ohio: American Society for Metals, Metals Park, 1990.Google Scholar
  4. 4.
    Arslan, E., ToTic, Y., Demirci, E.E., Vangolu, Y., Alsaran, A., and Efeoglu, I., High temperature wear behavior of aluminum oxide layers produced by AC micro arc oxidation, Surf. Coating Technol., 2009, vol. 204, pp. 829–833(2009).CrossRefGoogle Scholar
  5. 5.
    Singh, I.B., Mondal, D.P., Singh, M., Anshul Bhadkul, and Nadhi Jha, Ind. J. Chem. Technol., 2014, vol. 21, pp. 168–175.Google Scholar
  6. 6.
    Structural Alloys Handbook, Holt, J.M. (Tim) and Ho, C.Y., Ed., West Lafayette, IN: CINDAS/Purdue University, 1996.Google Scholar
  7. 7.
    Metals Handbook, Boyer, H.E. and Gall, T.L., Eds., American Society for Metals, OH, USA: Materials Park, 1985, p. 44073.Google Scholar
  8. 8.
    De Garmo, P., Black, J.T., and Kohser, R.A., Materials and Processes in Manufacturing, New York, USA: John Wiley Publications, 2003.Google Scholar
  9. 9.
    Kacer, H., Atik, E., and Miric, C., J. Mater. Process. Technol., 2003, vol. 142, no. 3, p. 762.CrossRefGoogle Scholar
  10. 10.
    Speidel, M.O., Stress corrosion cracking of aluminium, Metall. Trans. A, 1975, vol. 6, pp. 631–651.CrossRefGoogle Scholar
  11. 11.
    Davis, J.R., Ed., Corrosion of Aluminium and Aluminium Alloys, Materials Park, OH: ASM International, 1999.Google Scholar
  12. 12.
    Inês T.E. Fonseca, Nélia Lima a, João A. Rodrigues, M. Isabel S. Pereira, João C.S. Salvador, and Mario G.S. Ferreira, Passivity breakdown of Al 2024-T3 alloy in chloride solutions: a test of the point defect model, Electrochem. Commun., 2002, vol. 4, pp. 353–357.CrossRefGoogle Scholar
  13. 13.
    Charles K.S. Moy, Matthias Weiss, Junhai Xia, Gang Sha, Simon P. Ringer, Gianluca Ranzi, Influence of heat treatment on the microstructure, texture and formability of 2024 aluminium alloy, Materials Science and Engineering A 552 48–60 (2012).CrossRefGoogle Scholar
  14. 14.
    Prachya Peasura and Anucha Watanapa, Influence of Shielding Gas on Aluminum Alloy 5083 in Gas Tungsten Arc Welding, 2012 International Workshop on Information and Electronics Engineering (IWIEE), Procedia Eng., 2012, vol. 29, pp. 2465–2459.CrossRefGoogle Scholar
  15. 15.
    Goswami, R., Spanos, G., Paa, P.S., and Holtz, R.L., Precipitation behavior of the β phase in Al-5083, Mater. Sci. Eng. A, 2010, vol. 527, pp. 1089–1095.CrossRefGoogle Scholar
  16. 16.
    Kim, H.T. and Nam, S.W., Solidification cracking susceptibility of high strength aluminum alloy weldment, Scripta Mater., 1996, vol. 45, p. 1139.CrossRefGoogle Scholar
  17. 17.
    Lefebvre, F., Wang, S., Starink, M.J., and Sinclair, I., Microstructural features of fusion welded 2024-T351, Mater. Sci. Forum, 2002, vol. 396-402, pp. 1555–1560.CrossRefGoogle Scholar
  18. 18.
    Preston, R.V., Shercliff, H.R., Withers, P.J., and Smith, S.D., Finite element modelling of tungsten inert gas welding of aluminium alloy 2024, Sci. Technol. Weld Joining, 2003, vol. 8, pp. 10–8.CrossRefGoogle Scholar
  19. 19.
    Kou, S. and Le, Y., Welding parameters and the grainstructure of weld metal—A thermodynamic consideration, Metall. Mater. Trans. A, 1988, vol. 19, pp. 1075–1082.CrossRefGoogle Scholar
  20. 20.
    Hua, B. and Richardson, I.M., Autogenous laser keyhole welding of aluminum alloy 2024, J. Laser. Appl., 2005, vol. 17, pp. 70–80.CrossRefGoogle Scholar
  21. 21.
    Milewski, J.O., Lewis, G.K., and Wittig, J.E., Microstructural evaluation of low and high duty cycle Nd:YAG laser beam welds in 2024-T3 aluminum, Weld J., 1993, vol. 72, pp. 341s–6s.Google Scholar
  22. 22.
    Wanjara, P. and Brochu, M., Characterization of electron beam welded AA2024, Vacuum, 2010, vol. 85, pp. 268–282.CrossRefGoogle Scholar
  23. 23.
    Temmar, M., Hadji, M., and Sahraoui, T., Effect of post-weld aging treatment on mechanical properties of Tungsten Inert Gas welded low thickness 7075 aluminum alloy joints, Mater. Design, 2011, vol. 32, pp. 3532–3536.CrossRefGoogle Scholar
  24. 24.
    Totten, G.E., Webster, G.M., and Bates, C.E., Chapter 20–Quenching, Handbook of Aluminum, Vol. 1: Physical Metallurgy and Processes, Totten, G.E. and MacKenzie, D.S., Eds., CRC Press, Boca Raton, Fla., 2003, pp. 971–1062.Google Scholar
  25. 25.
    Croucher, T., Quenching of aluminum alloys: what this key step accomplishes, Heat Treating, 1982, vol. 14, no. 5, May, pp. 20–21.Google Scholar
  26. 26.
    Heat Treating Progress, ASM International, 2009, vol. 9, no. 7.Google Scholar
  27. 27.
    Belov, N.A., Eskin, D.G., and Aksenov, A.A., Multicomponent Phase Diagrams: Applications for Commercial Aluminium Alloys, Elsevier, 2005.Google Scholar
  28. 28.
    Moy, Ch.K.S., Weiss, M., Xia, J., Sha, G., Ringer, S.P., and Ranzi, G., Influence of heat treatment on the microstructure, texture and formability of 2024 aluminium alloy, Mater. Sci. Eng. A, 2012, vol. 552, pp. 48–60.CrossRefGoogle Scholar
  29. 29.
    Saeedikhani, M., Javidi, M., and Yazdani, A., Anodizing of 2024-T3 aluminum alloy in sulfuric−boric−phosphoric acids and its corrosion behavior, Trans. Nonferrous Met. Soc. China, 2013, vol. 23, pp. 2551−2559.CrossRefGoogle Scholar
  30. 30.
    Maksimović, V., Cvijović, Z., and Radmilović, V., Microstructural characterization of modified commercial 2219 aluminum alloy, Metalurgija, 2005, vol. 11, no. 4, pp. 303–308.Google Scholar
  31. 31.
    Moreto, J.A., Gamboni, O.C., Marino, C.E.B., Bose Filho, W.W., Fernandes, J.C.S., and Rocha, L.A., Corrosion behavior of Al and Al–Li alloys used as aircraft materials, Corros. Prot. Mater., 2012, vol. 31, no. 3/4, pp. 60–64.Google Scholar
  32. 32.
    Belov, N.A. and Avxentieva, N.N., Quantitative Analysis of the Al–Cu–Mg–Mn–Si Phase Diagram as Applied to Commercial Aluminum Alloys of Series 2xxx, Metal. Sci. Heat Treatment, 2013, vol. 55, no. 7, pp. 358–363.CrossRefGoogle Scholar
  33. 33.
    Ju Kang, Rui-dong Fu, Guo-hong Luan, Chun-lin Dong, and Miao He, In-situ investigation on the pitting corrosion behavior of friction stir welded joint of AA2024-T3 aluminium alloy, Corr. Sci., 2010, vol. 52, pp. 620–626.CrossRefGoogle Scholar
  34. 34.
    Li Song-mei, Zhang Hong-rui, and Liu Jian-hua, Corrosion behavior of aluminum alloy 2024-T3 by 8- hydroxy-quinoline and its derivative in 3.5% chloride solution, J. Trans. Nonferrous Met. Soc. China, 2007, vol. 17, no. 2, pp. 318−325.CrossRefGoogle Scholar
  35. 35.
    Li Song-mei, Zhang Hong-rui, and Liu Jian-hua, Corrosion behavior of aluminum alloy 2024-T3 by 8-hydroxy-quinoline and its derivative in 3.5% chloride solution, J. Trans. Nonferrous Met. Soc. China, 2007, vol. 17, no. 2, pp. 318−325.CrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2017

Authors and Affiliations

  • Nacer Zazi
    • 1
  • Madjid Ifires
    • 2
  • Sofiane Mehala
    • 3
  • Jean Paul Chopart
    • 4
  1. 1.Faculty of Construction Engineering, Department of Mechanical Engineering (LMSE)University Mouloud Mammeri of Tizi-OuzouTizi-OuzouAlgeria
  2. 2.Centre de Recherche en Technologie des Semi-Conducteurs pour l’EnergétiqueAlgiersAlgeria
  3. 3.Faculty of Construction Engineering, Department of Mechanical EngineeringUniversity Mouloud Mammeri of Tizi-OuzouTizi-OuzouAlgeria
  4. 4.LISM EA 4695 UFR SEN, BP1039Université de Reims Champagne Ardenne, Moulin de la HousseReims, CedexFrance

Personalised recommendations