Advertisement

Russian Journal of Non-Ferrous Metals

, Volume 58, Issue 5, pp 552–559 | Cite as

Experimental investigations and thermodynamic calculations of the structural and phase composition in the Ti–Si–C system

  • V. V. Popov
  • I. I. Gorbachev
  • A. Yu. Pasynkov
  • M. N. Kachenyuk
  • O. V. Somov
Refractory, Ceramic, and Composite Materials
  • 38 Downloads

Abstract

Thermodynamic calculations of the structural-phase equilibrium in the Ti–Si–C system at 1100–1400°C are performed using the CALPHAD method. Calculated phase diagrams of this system are presented. It is established that 100% of the Ti3SiC2 phase is formed with the stoichiometric component ratio. With the deviation of the carbon or silicon content, titanium carbide, titanium disilicide, or silicon carbide appear in the system. The temperature almost does not affect the phase composition in the studied temperature range. The calculated data are compared with the experimental determination of the phase composition of the samples of the mentioned system after the spark-plasma sintering of the mechanically activated powder composition. In practice, the process temperature and duration of high-temperature holding substantially affect the phase composition of the final product, which is associated with the limited rate of solid-phase reactions during the synthesis of compounds. The samples have a grain size of 1–5 μm and hardness of 4–15 GPa, depending the phase composition.

Keywords

thermodynamic calculations phase diagrams titanium silicon carbide spark-plasma sintering phase formation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Barsoum, M.W., The MN + 1AXN: a new class of solids: thermodynamically stable nanolaminates, Prog. Solid State Chem., 2000, vol. 28, pp. 201–281.CrossRefGoogle Scholar
  2. 2.
    Sarkar, D. and Kumar, B.V. Manoj, and Basusarkar, B., Understanding the fretting wear of Ti3SiC2, J. Eur. Ceram. Soc., 2006, vol. 26, no. 13, pp. 2441–2452.CrossRefGoogle Scholar
  3. 3.
    Barsoum, M.W. and Barsoum, T., El-Raghy, synthesis and characterization of a remarkable ceramic: Ti3SiC2, J. Am. Ceram. Soc., 1996, vol. 79, no. 7, pp. 1953–1956.CrossRefGoogle Scholar
  4. 4.
    Barsoum, M.W., El-Raghy, T., and Rawn, C.J., Thermal properties of Ti3SiC2, J. Phys. Chem. Solids, 1999, vol. 60, no. 4, pp. 429–439.CrossRefGoogle Scholar
  5. 5.
    Barsoum, M.W., Brodkin, D., and El-Raghy, T., Formation and thermal stability of amorphous Ti–Si–C alloys, Scr. Mater., 1997, vol. 3, no. 5, pp. 535–541.CrossRefGoogle Scholar
  6. 6.
    Popov, V.V. and Gorbachev, I.I., Analysis of solubility of carbides, nitrides and carbonitrides in steel by methods of computer thermodynamics. I. Description of thermodynamic properties. Computational method, Fiz. Met. Metalloved., 2004, vol. 98, no. 4, pp. 11–21.Google Scholar
  7. 7.
    Saunders, N. and Miodownik, A.D., Calphad: Calculation of phase diagrams, a comprehensive guide (Pergamon Materials Series), vol. 1, Cahn, R.W., Ed., Oxford: Pergamon, 1998.Google Scholar
  8. 8.
    Sandman, B. and Agren, J., A regular solution model for phase with several components and sublattices, suitable for computer applications, J. Phys. Chem. Solids, 1981, vol. 42, no. 4, pp. 297–301.CrossRefGoogle Scholar
  9. 9.
    Hillert, M. and Staffonsson, L.-I., The regular solution model for stoichiometric phases and ionic melts, Acta Chem. Scand., 1970, vol. 24, no. 10, pp. 3618–3626.CrossRefGoogle Scholar
  10. 10.
    Harvig, H., An extended version of the regular solution model for stoichiometric phases and ionic melts, Acta Chem. Scand., 1971, vol. 25, no. 9, pp. 3199–3204.CrossRefGoogle Scholar
  11. 11.
    Dumitrescu, L.F.S., Hillert, M., and Sundman, B., A reassessment of Ti–C–N based on a critical-review of available assessments of Ti–N and Ti–C, Z. Metallkd., 1999, vol. 90, pp. 534–541.Google Scholar
  12. 12.
    Gröbner, J., Lukas, H.L., and Aldinger, F., Thermodynamic calculation of the ternary system Al–Si–C, CALPHAD, 1996, vol. 20, no. 2, pp. 247–254.CrossRefGoogle Scholar
  13. 13.
    Dinsdale, A.T., SGTE data for pure elements, CALPHAD, 1991, vol. 15, no. 4, pp. 317–425.CrossRefGoogle Scholar
  14. 14.
    Seifert, H.J., Lukas, H.L., and Petzow, G., Thermodynamic optimization of the Ti–Si system, Z. Metallkd., 1996, vol. 87, no. 1, pp. 2–13.Google Scholar
  15. 15.
    Du, Y. and Schuster, J.C., Experimental and thermodynamic investigations in the Ti–Si–C system, Ber. Bunsen-Ges. Phys. Chem., 1998, vol. 102, no. 9, pp. 1185–1188.CrossRefGoogle Scholar
  16. 16.
    Du, Y., Schuster, J.C., Seifert, H.J., and Aldinger, F., Experimental investigation and thermodynamic calculation of the titanium–silicon–carbon system, J. Am. Ceram. Soc., 2000, vol. 83, no. 1, pp. 197–203.CrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2017

Authors and Affiliations

  • V. V. Popov
    • 1
  • I. I. Gorbachev
    • 1
  • A. Yu. Pasynkov
    • 1
  • M. N. Kachenyuk
    • 2
  • O. V. Somov
    • 2
  1. 1.Institute of Metal Physics, Ural BranchRussian Academy of SciencesYekaterinburgRussia
  2. 2.Perm National Research Polytechnic UniversityPermRussia

Personalised recommendations