Russian Journal of Non-Ferrous Metals

, Volume 58, Issue 5, pp 545–551 | Cite as

Revisiting the structure of SiC–B4C–Me d B2 systems and prospects for the development of composite ceramic materials based on them

  • S. S. Ordan’yan
  • D. D. Nesmelov
  • D. P. Danilovich
  • Yu. P. Udalov
Refractory, Ceramic, and Composite Materials


The liquidus surface in SiC–B4C–Me d B2 quasi-ternary eutectic systems (where Me d B2 is CrB2, VB2, NbB2, TaB2, ZrB2, HfB2, and W2B5) is modeled in the approximation of the regular solution model based on the experimental data on bordering systems and individual compounds. The calculated and experimental data are compared. Regularities of the structure of phase diagrams of SiC–B4C–Me d B2 systems are analyzed. It is noted that the diboride concentration appropriately decreases in the triple eutectic with an increase in its melting point. Correlation dependences between the eutectic temperature and melting point \({t_{eut}} = f\left( {t_m^{M{e^d}{B_2}}} \right)\) and formation enthalpy of diboride \({t_{eut}} = f\left( {\vartriangle H_f^{M{e^d}{B_2}}} \right)\) are constructed. The character of dependences is close to previously observed similar dependences in SiC–Me d B2 and B4C–Me d B2 bordering quasi-binary systems. It is concluded based on the analysis of the structure and parameters of analyzed systems that it is promising to develop a broad series of construction and functional ceramic materials and coatings fabricated by “free” sintering and by pulsed methods of heating and consolidation based on the considered systems.


boron carbide silicon carbide titanium diboride chromium diboride eutectic phase equilibria liquidus refractory compounds superhard materials 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Thevenot, F., Boron carbide—a comprehensive review, J. Eur. Ceram. Soc., 1990, vol. 6, no. 4, pp. 205–225.CrossRefGoogle Scholar
  2. 2.
    Seifert, H.J. and Aldinger, F., Phase equilibria in the Si–B–C–N system, in: High Performance Non-Oxide Ceramics I, Berlin–Heidelberg: Springer, 2002, pp. 1–58.Google Scholar
  3. 3.
    Andrievski, R.A., Micro- and nanosized boron carbide: synthesis, structure and properties, Rus. Chem. Rev., 2012, vol. 81, no. 6, pp. 549–559.CrossRefGoogle Scholar
  4. 4.
    Ordanyan, S.S. and Unrod, V.I., Eutectics and their models, sintered composites, in systems of refractory materials, Refract. Ind. Ceram., 2005, vol. 46, no. 4, pp. 276–281.CrossRefGoogle Scholar
  5. 5.
    Ordanyan, S.S., Vikhman, S.V., Nesmelov, D.D., Danilovich, D.P., and Panteleev, I.B., Nonoxide highmelting point compounds as materials for extreme conditions, Adv. Sci. Technol., 2014, vol. 89, pp. 47–56.CrossRefGoogle Scholar
  6. 6.
    Sciti, D., Silvestroni, L., Medri, V., and Monteverde, F., Sintering and densification mechanisms of ultra-high temperature ceramics, in: Ultra-High Temperature Ceramics: Materials for Extreme Environment Applications, 2014, pp. 112–143.Google Scholar
  7. 7.
    Van Dijen, F.K. and Mayer, E., Liquid phase sintering of silicon carbide, J. Eur. Ceram. Soc., 1996, vol. 16, no. 4, pp. 413–420.CrossRefGoogle Scholar
  8. 8.
    Can, A., Herrmann, M., McLachlan, D.S., Sigalas, I., and Adler, J., Densification of liquid phase sintered silicon carbide, J. Eur. Ceram. Soc., 2006, vol. 26, no. 9, pp. 1707–1713.CrossRefGoogle Scholar
  9. 9.
    Gomez, E., Echeberria, J., Iturriza, I., and Castro, F., Liquid phase sintering of SiC with additions of Y2O3, Al2O3 and SiO2, J. Eur. Ceram. Soc., 2004, vol. 24, no. 9, pp. 2895–2903.CrossRefGoogle Scholar
  10. 10.
    Roy, T.K., Subramanian, C., and Suri, A.K., Pressureless sintering of boron carbide, Ceram. Int., 2006, vol. 32, no. 3, pp. 227–233.CrossRefGoogle Scholar
  11. 11.
    Kim, H.W., Koh, Y.H., and Kim, H.E., Densification and mechanical properties of B4C with Al2O3 as a sintering aid, J. Am. Ceram. Soc., 2000, vol. 83, no. 11, pp. 2863–2865.CrossRefGoogle Scholar
  12. 12.
    Dariel, M.P. and Frage, N., Reaction bonded boron carbide: recent developments, Adv. Appl. Ceram., 2012, vol. 111, nos. 5–6, pp. 301–310.CrossRefGoogle Scholar
  13. 13.
    Golubeva, N.A., Plyasunkova, L.A., Kelina, I.Y., Antonova, E.S., and Zhuravlev, A.A., Study of reaction- bonded boron carbide properties, Refr. Ind. Ceram., 2015, vol. 55, no. 5, pp. 414–418.CrossRefGoogle Scholar
  14. 14.
    Rehman, S.S., Ji, W., Khan, S.A., Fu, Z., and Zhang, F., Microstructure and mechanical properties of B4C densified by spark plasma sintering with Si as a sintering aid, Ceram. Int., 2015, vol. 41, no. 1, pp. 1903–1906.CrossRefGoogle Scholar
  15. 15.
    Kumazawa, T., Honda, T., Zhou, Y., Miyazaki, H., Hyuga, H., and Yoshizawa, Y.I., Pressureless sintering of boron carbide ceramics, J. Ceram. Soc. Jap., 2008, vol. 116, no. 1360, pp. 1319–1321.CrossRefGoogle Scholar
  16. 16.
    Rao, S.R., Padmanabhan, G., and Rao, P.V.C.S., Fabrication and tribological properties of Al–Si/B4C metal matrix composites, Int. J. Surface Eng. Interdiscipl. Mater. Sci., 2014, vol. 2, no. 1, pp. 74–84.Google Scholar
  17. 17.
    Landingham, R.L., US Patent 8530363, 2013.Google Scholar
  18. 18.
    Luo, Z., Song, Y., Zhang, S., and Miller, D.J., Interfacial microstructure in a B4C/Al composite fabricated by pressureless infiltration, Metal. Mater. Trans. A, 2012, vol. 43, no. 1, pp. 281–293.CrossRefGoogle Scholar
  19. 19.
    Schwetz, K.A. and Grellner, W., The influence of carbon on the microstructure and mechanical properties of sintered boron carbide, J. Less-Common Met., 1981, vol. 82, pp. 37–47.CrossRefGoogle Scholar
  20. 20.
    Suzuki, H., Hase, T., and Maruyama, T., Effect of carbon on sintering of boron carbide, J. Ceram. Soc. Jap., 1979, vol. 87 (1008), pp. 430–433.Google Scholar
  21. 21.
    Champagne, B. and Angers, R., Mechanical properties of hot-pressed B–B4C materials, J. Am. Ceram. Soc., 1979, vol. 62, nos. 3–4, pp. 149–153.CrossRefGoogle Scholar
  22. 22.
    Munhollon, T., Kuwelkar, K., and Haber R., Processing of boron rich boron carbide by boron doping, in: Advances in Ceramic Armor X: A Collection of Papers Presented at the 38th Int. Conf. on Advanced Ceramics and Composites, Wiley, 2015, pp. 119–127.CrossRefGoogle Scholar
  23. 23.
    Lee, H. and Speyer, R.F., Pressureless sintering of boron carbide, J. Am. Ceram. Soc., 2003, vol. 86, no. 9, pp. 1468–1473.CrossRefGoogle Scholar
  24. 24.
    Weaver, G.Q., US Patent 4320204, 1982.Google Scholar
  25. 25.
    Yamada, S., Hirao, K., Yamauchi, Y., and Kanzaki, S., Sintering behavior of B4C–CrB2 ceramics, J. Mater. Sci. Lett., 2002, vol. 21, no. 18, pp. 1445–1447.CrossRefGoogle Scholar
  26. 26.
    Yamada, S., Hirao, K., Yamauchi, Y., and Kanzaki, S., Densification behaviour and mechanical properties of pressureless sintered B4C–CrB2 ceramics, J. Mater. Sci., 2002, vol. 37, no. 23, pp. 5007–5012.CrossRefGoogle Scholar
  27. 27.
    Yamada, S., Hirao, K., Yamauchi, Y., and Kanzaki, S., B4C–CrB2 composites with improved mechanical properties, J. Eur. Ceram. Soc., 2003, vol. 23, no. 3, pp. 561–565.CrossRefGoogle Scholar
  28. 28.
    Li, X., Jiang, D., Zhang, J., Lin, Q., Chen, Z., and Huang, Z., Pressureless sintering of boron carbide with Cr3C2 as sintering additive, J. Eur. Ceram. Soc., 2014, vol. 34, no. 5, pp. 1073–1081.CrossRefGoogle Scholar
  29. 29.
    Demirskyi, D. and Sakka, Y., In situ fabrication of B4C–NbB2 eutectic composites by spark-plasma sintering, J. Am. Ceram. Soc., 2014, vol. 97, no. 8, pp. 2376–2378.CrossRefGoogle Scholar
  30. 30.
    Demirskyi, D. and Sakka, Y., Fabrication, microstructure and properties of in situ synthesized B4C–NbB2 eutectic composites by spark plasma sintering, J. Ceram. Soc. Jap, 2015, vol. 123, no. 1433, pp. 33–37.CrossRefGoogle Scholar
  31. 31.
    Ordan’yan, S.S., Interaction regularities in B4C–MeIV–VIB2 systems, Inorg. Mater., 1993, no. 5, pp. 15–17.Google Scholar
  32. 32.
    Ordan’yan, S.S., Interaction regularities in SiC–MeIV–VIB2 systems, Zh. Prikl. Khim., 1993, vol. 66, no. 11, pp. 2439–2444.Google Scholar
  33. 33.
    Ordan’yan, S.S., Vikhman, S.V., and Kuznetsov, M.N., Structure of the polythermal SiC–W2B5 join of the B–C–Si–V system, Ogneupory Tekh. Keram., 2004, vol. 12, pp. 2–4.Google Scholar
  34. 34.
    Udalov, Yu.P., Valova, E.E., and Ordan’yan, S.S., Preparation and abrasive properties of eutectic compositions in the B4C–SiC–TiB2 system, Refractories, 1995, vol. 36, no. 8, pp. 233–234.CrossRefGoogle Scholar
  35. 35.
    Li, W.J., Tu, R., and Goto, T., Preparation of directionally solidified B4C–TiB2–SiC ternary eutectic composites by a floating zone method and their properties, Mater. Trans., 2005, vol. 46, no. 9, pp. 2067–2072.CrossRefGoogle Scholar
  36. 36.
    Grigor’ev, O.N., Gogotsi, G.A., Gogotsi, Y.G., Subbotin, V.I., and Brodnikovskii, N.P., Synthesis and properties of ceramics in the SiC–B4C–MeB2 system, Powder Metall. Metal Ceram., 2000, vol. 39, nos. 5–6, pp. 239–250.CrossRefGoogle Scholar
  37. 37.
    Bogomol, Yu.I., Loboda, P.I., and Holovenko, Ya.B., Structure and properties of quasi-ternary directionally reinforced composites of B4C–TiB2–SiC system, Metaloznav. Obrob. Metal., 2015, vol. 2, pp. 37–42.Google Scholar
  38. 38.
    Chalgin, A.V., Vikhman, S.V., Ordan’yan, S.S., Danilovich, D.P., and Nechaeva, M.V., Principles of technology and mechanical properties of structural ceramics based on the ternary system SiC–B4C–CrB2, in: MRS Proceedings, Cambridge Univ., 2015, vol. 1765, imrc2014 s4a-o015.Google Scholar
  39. 39.
    Tu, R., Li, N., Li, Q., Zhang, S., Zhang, L., and Goto, T., Microstructure and mechanical properties of B4C–HfB2–SiC ternary eutectic composites prepared by arc melting, J. Eur. Ceram. Soc., 2016, vol. 36, no. 4, pp. 959–966.CrossRefGoogle Scholar
  40. 40.
    Tu, R., Li, N., Li, Q.Z., Zhang, S., Goto, T., and Zhang, L.M., Preparation of B4C–ZrB2–SiC ternary eutectic composites by arc melting and their properties, Mater. Res. Innov., 2015, vol. 19, supl. 10, pp. S10-26–S10-29.Google Scholar
  41. 41.
    Fahrenholtz, W.G., Neuman, E.W., Brown-Shaklee, H.J., and Hilmas, G.E., Superhard boride–carbide particulate composites, J. Am. Ceram. Soc., 2010, vol. 93, no. 11, pp. 3580–3583.CrossRefGoogle Scholar
  42. 42.
    Udalov, Y. and Morozov, Y., The program of calculation of fusibility curves of triple systems DIATRIS 1.2 (Algorithm, interface, and technical application), in: 6th Int. School-Conf. “Phase diagrams in materials science”, Kiev, 2001, pp. 58–59.Google Scholar
  43. 43.
    Ordan’yan, S.S. and Gudovskikh, P.S., Evolution of the Al2O3–ZrO2(Y2O3) eutectic fibers structure, Zh. Prikl. Khim., 1995, vol. 68, no. 12, pp. 1955–1959.Google Scholar
  44. 44.
    Gudovskikh, P.S. and Pigunova, D.N., Ceramics based on cubic ZrO2 (Y2O3) with addition of a fused Al2O3–ZrO2(Y2O3) eutectic, Refract. Ind. Ceram., 2004, vol. 45, no. 1, pp. 1–2.CrossRefGoogle Scholar
  45. 45.
    Zhidkova, T.V., Danilovich, D.P., and Ordanyan, S.S., Joint synthesis of heterogeneous powders in the B4C–SiC–TiB2 system, in: Book of Abstracts of the 14th Int. Conf. of European Ceramic Society, Toledo, 2015, ID: 01800.Google Scholar
  46. 46.
    Zhidkova, T.V., Danilovich, D.P., and Ordan’yan, S.S., Peculiarities of joint carbothermal synthesis of powders in the SiC–B4C–TiB2 system, in: Vtoraya Vserossiiskaya konferentsiya s mezhdunarodnym uchastiem “Innovatsii v materialovedenii” (Second All-Russian Conf. with Int. Participation “Innovations in Materials Science), Moscow, 2015, 293–294.Google Scholar

Copyright information

© Allerton Press, Inc. 2017

Authors and Affiliations

  • S. S. Ordan’yan
    • 1
  • D. D. Nesmelov
    • 1
  • D. P. Danilovich
    • 1
  • Yu. P. Udalov
    • 1
  1. 1.St. Petersburg State Technological Institute (Technical University)St. PetersburgRussia

Personalised recommendations