Russian Journal of Non-Ferrous Metals

, Volume 58, Issue 5, pp 457–462 | Cite as

Using acoustic field energy to decrease dust discharge from the working space of the Vanyukov furnace

  • V. I. Matyukhin
  • V. A. Goltsev
  • S. Ya. Zhuravlev
  • V. A. Dudko
Metallurgy of Nonferrous Metals

Abstract

To organize in-furnace dust settling in the Vanyukov furnace at OAO SUMZ (Revda, Russia), acoustic emitter technology is used. The emitter design includes a nozzle tube, an air nozzle, a resonator, and a focusing surface. Starting from the surface area of the furnace melt bath and recommended specific acoustic power for in-furnace dust settling, the summary acoustic field sound power is calculated and the optimal amount and arrangement places of acoustic emitters are determined. To form the acoustic field in the Vanyukov furnace for melting copper sulfide zinc-containing feedstock and deplete liquid converter slags, four acoustic emitters are mounted in the end wall through an inspection window, two on the apothecary side and two on the loading side of charge materials. In general, six pilot modes of testing the in-furnace dust settling system with various operational settings of acoustic emitters and one base mode for comparing performance characteristics are implemented. The duration of pilot periods varies from 5 to 18 days, and the total aggregate service time is 68 days. The presence of the acoustic field in the working furnace space at any emitter operation settings promote a decrease in the concentration of dust particles after the chain of gas purifiers (in the commodity point). It is revealed by the experimental data that the minimal summary acoustic field sound power, which decreases the dust concentration due to the coagulation of dust particles inside the furnace space, is 800 W.

Keywords

Vanyukov furnace dust removal dust settling acoustic gas-jet emitter material and heat balance matte output 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Gushchin, S.N., Telegin, A.S., Lobanov, V.I., and Koryukov, V.N., Teplotekhnika i teploenergetika metallurgicheskogo proizvodstva (Thermal Engineering and Heat Power Engineering of Metallurgical Production), Moscow: Metallurgiya, 1993.Google Scholar
  2. 2.
    Vanyukov, A.V. and Utkin, N.I., Kompleksnaya pererabotka mednogo i nikelevogo syr’ya (Complex Processing of Copper and Nickel Raw Materials), Chelyabinsk: Metallurgiya, 1988.Google Scholar
  3. 3.
    Han Feng, Yu Fei, and Cui Zhaojie, Industrial metabolism of copper and sulfur in a copper-specific ecoindustrial park in China, J. Clean. Product., 2015, vol. 133, pp. 459–466.CrossRefGoogle Scholar
  4. 4.
    Naboichenko, S.S., Ageev, N.G., Doroshkevich, A.P., Zhukov, V.P., Eliseev, E.I., Karelov, S.V., Lebed’ A.B., and Mamyachenkov S.V., Protsessy i apparaty tsvetnoi metallurgii (Processes and Apparatuses of Nonferrous Metallurgy), Yekaterinburg, UGTU-UPI, 2005.Google Scholar
  5. 5.
    Vaisburd, S., Berner, A., Brandon, D.G., Kozhakhmetov, S., Kenzhaliyev, E., and Zhalelev, R., Slags and mattes in Vanyukov’s process for the extraction of copper, Metall. Mater. Trans, 2015, vol. 33, no. 4, pp. 551–559.CrossRefGoogle Scholar
  6. 6.
    Chen, L., Bin, W., Yang, T., Liu, W., and Bin, S., Research and industrial application of oxygen-rich side-blow bath smelting technology, in: Proc. 4th Int. Symp. on High-Temperature Metallurgical Processing (TMS 2013). Annual Meeting and Exhibition, San Antonio, TX: 2013. pp. 49–55.Google Scholar
  7. 7.
    Matyukhin, V.I., Yaroshenko, Yu.G., Matyukhin, O.V., Pan’shin, A.M., and Konovalov, I.S., Using the energy of the acoustic field to improve the performance of the shaft furnace, Tsvetn. Met., 2013, no. 8, pp. 64–70.Google Scholar
  8. 8.
    Asanov, D.A., Filyanova, L.A., Zapasnyi, V.V., and Sukhova, N.M., Study of the performance indices of a dust-cleaning system at the Balkhash copper smelter, Metallurgist, 2016, nos. 3–4, pp. 331–338.CrossRefGoogle Scholar
  9. 9.
    Zhang, H.L., Zhou, C.Q., Bing, W.U., and Chen, Y.M., Numerical simulation of multiphase flow in a Vanyukov furnace, J. South. Afr. Inst. Mining Metall., 2015, vol. 115, no. 5, pp. 457–463.CrossRefGoogle Scholar
  10. 10.
    Kutateladze, S.S., Teplo i massoobmen v zvukovom pole (Heat-and-Mass Exchange in the Sound Field), Novosibirks: Sib. Otd. Akad. Nauk SSSR, 1970.Google Scholar
  11. 11.
    Cafiero, G., Greco, C.S., Astarita, T., and Discetti, S., Flow field features of fractal impinging jets at short nozzle to plate distances, Exp. Therm. Fluid Sci., 2016, no. 78, pp. 334–344.CrossRefGoogle Scholar
  12. 12.
    Andrade, M.A.B., Skotis, G.D., Ritchie, S.B., Cumming, D.R.S., Riehle, M.O., and Bernassau, A.L., Contactless acoustic manipulation and sorting of particles by dynamic acoustic fields, IEEE Trans. Ultrason. Ferroelectr. Freq. Contr., 2016, vol. 63, no. 10, pp. 1593–1600.CrossRefGoogle Scholar
  13. 13.
    Dong, X.-R., Liu, Y.-X., Chen, Y.-H., and Dong, G., Research on control of hypersonic shock wave/boundary layer interactions by double micro-ramps, Binggong Xuebao. Acta Armament., 2016, vol. 37, no. 9, pp. 1624–1632.Google Scholar
  14. 14.
    Dolinskii, A.A., Basok, B.I., and Gulyi, S.I., Diskretno-impul’snyi vvod energii v teplotekhnologiiyah (Discrete-Pulsed Energy Input in Heat Technologies), Kiev, IFTT Nats. Akad. Nauk Ukrainy, 1996.Google Scholar
  15. 15.
    Seregin, P.S., Investigation into Gas Dynamics of the in-Furnace Space, Dust Escape, and Scull Formation in the Vanyukov Furnace with the Use of Physical Simulation, Cand. Sci. (Eng.) Dissertation, St. Petersburg: Gipronikel’, 2001.Google Scholar
  16. 16.
    Selivanov, E.N., Gulyaeva, R.I., Skopov, G.V., and Matveev, A.V., Material composition of the dust from the electrostatic precipitators of a Vanyukov furnace at the Middle Ural Copper Smelter, Metallurgist, 2014, nos. 5–6, pp. 431–435.Google Scholar
  17. 17.
    Kardashev, G.A., Fizicheskie metody intensifikatsii protsessov v khimicheskoi tekhnologii (Physical Methods of Intensifying Processes in Chemical Technology), Moscow: Khimiya, 1990.Google Scholar
  18. 18.
    Konovalov, I.S., Improvement of Thermal and Gas- Dynamic Operation of Shaft Copper Smelting Furnaces, Cand. Sci. (Eng.) Dissertation, Yekaterinburg: Ural Federal Univ., 2012.Google Scholar
  19. 19.
    Shilton, R.J., Yeo, L.Y., and Friend, J.R., Quantification of surface acoustic wave induced chaotic mixingflows in microfluidic wells, Sens. Actuat. B: Chem., 2011, vol. 160, no. 1, pp. 1565–1572.CrossRefGoogle Scholar
  20. 20.
    Khabeev, N.S., Intensification of the effect exerted by bubbles on a body immersed in a liquid due to the radial bubble oscillations, J. Eng. Phys. Thermophys., 2015, vol. 88, no. 3, pp. 645–651.CrossRefGoogle Scholar
  21. 21.
    Ivanovskii, A.I., Teoreticheskoe i eksperimental’noe izuchenie potokov, vyzvannykh zvukom (Theoretical and Experimental Study of Flows Caused by the Sound), Moscow: Gidrometeoizdat, 1959.Google Scholar
  22. 22.
    Rudenko, O.V. and Molen, S.I., Teoreticheskie osnovy nelineinoi akustiki (Theoretical Foundations of Nonlinear Acoustics), Moscow: Nauka, 1978.Google Scholar

Copyright information

© Allerton Press, Inc. 2017

Authors and Affiliations

  • V. I. Matyukhin
    • 1
  • V. A. Goltsev
    • 1
  • S. Ya. Zhuravlev
    • 1
  • V. A. Dudko
    • 1
  1. 1.Ural Federal UniversityYekaterinburgRussia

Personalised recommendations