Russian Journal of Non-Ferrous Metals

, Volume 58, Issue 5, pp 530–539 | Cite as

Nanomaterials of SHS technology for tribological applications: A review

  • A. P. Amosov
Self-Propagating High-Temperature Synthesis


A review of results of applying the powder technology of self-propagating high-temperature synthesis (SHS) for obtaining various nanomaterials that can be used according to the tribotechnical indentation is given. First, these are low-cost nanopowders of sulfides, oxides, nitrides, carbides, borides, and metals which are suitable as solid lubricants and friction modifiers for liquid and plastic lubricating materials. Second, these are solid compact nanostructured ceramic and composite materials for the fabrication of tribotechnical construction. This type of nanomaterial can be fabricated both ex situ from SHS nanopowders by sintering or introduction into the melt both in situ in one stage from initial powders reagents by gasostatic SHS technology, forced SHS compaction, SHS casting, and SHS in the melt, which considerably simplifies and cheapens the production of such materials. Third, these are SHS materials for the deposition of nanostructured coatings of various thicknesses with a high wear resistance and low friction coefficients, such as nanostructured materials for surfacing and spraying, electrospark alloying electrodes, multicomponent targets for magnetron sputtering, cathodes for vacuum-arc evaporation, and nanodispersed fillers of electrochemical and chemical coatings.


self-propagating high-temperature synthesis solid lubricants nanopowder friction modifiers nanostructured ceramics nanocomposites nanocoatings 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Basu, B. and Kalin, M., Tribology of Ceramics and Composites: a Materials Science Perspective, Hoboken, NJ: Wiley, 2011.CrossRefGoogle Scholar
  2. 2.
    Achanta, S., Dress, D., and Celis, J.-P., Nanocoatings for tribological applications, in: Nanocoatings and ultrathin films: Technologies and applications, Makhlouf, A.S.H. and Tiginyanu, I., Eds., Cambridge: Woodhead, 2011, pp. 355–396.CrossRefGoogle Scholar
  3. 3.
    Tang, Z. and Li, S., A review of recent developments of friction modifier for liquid lubricants (2007–present), Curr. Opin. Solid State Mater. Sci., 2014, vol. 18, no. 3, pp. 119–139.CrossRefGoogle Scholar
  4. 4.
    Levashov, E.A., Rogachev, A.S., Kurbatkina, V.V., Maksimov, Yu.M., and Yukhvid, V.I., Perspektivnye materialy i tekhnologii samorasprosranyayushchegosya vysokotemperaturnogo sinteza (Advanced Materials and Technology of Self-Propagating High-Temperature Synthesis), Moscow: MISIS, 2011.Google Scholar
  5. 5.
    Amosov, A.P., Borovinskaya, I.P., Merzhanov, A.G., and Sychev, A.E., Principles and methods for regulation of dispersed structure of SHS powders: from monocrystallites to nanoparticles, Int. J. SHS, 2005, vol. 14, no. 3, pp. 165–186.Google Scholar
  6. 6.
    Amosov, A.P., Materials and coatings of tribotechnical purpose, obtained by SHS technology, Remont, Vosstanovl., Moderniz., 2010, no. 1, pp. 15–20.Google Scholar
  7. 7.
    Puchkov, V.N. and Zaskalko, P.P., Study of influence of additives of nanostructured materials on the tribological properties of lubricating oils, Tren. Smaz. Mash. Mekhan., 2010, no. 11, pp. 25–30.Google Scholar
  8. 8.
    Akbulut, M., Nanoparticle-based lubrication systems, Powder Miner. Mining, 2012, vol. 1, no. 1, 1001e101 (open access), (accessed: March 16, 2016). doi 10.4172/2168-9806/1000e101Google Scholar
  9. 9.
    An, V., Bozheyev, F., Richencoeur, F., and Irtegov, Yu., Synthesis and characterization of nanolamellar tungsten und molybdenum disulfides, Mater. Lett., 2011, vol. 65, nos. 15–16, pp. 2381–2383.CrossRefGoogle Scholar
  10. 10.
    An, V.V., Irtegov, Yu.A., Yavorovsky, N.A., Galanov, A.I., and Pogrebenkov, V.M., Tribological properties of nanolamellar disulfides of tungsten and molybdenum, Izv. Vyssh. Uchebn. Zaved. Fis., 2011, vol. 54, no. 11, pp. 326–331.Google Scholar
  11. 11.
    Alves, S.M., Barros, B.S., Trajano, M.F., Ribeiro, K.S.B., and Moura, E., Tribological behavior of vegetable oilbased lubricants with nanoparticles of oxides in boundary lubrication conditions, Trib. Int., 2013, vol. 65, pp. 28–36.CrossRefGoogle Scholar
  12. 12.
    Patil, K.C., Hedge, M.S., and Tanu, R., Chemistry of Nanocrystalline Oxide Materials. Combustion Synthesis, Properties and Applications, Singapore: World Scientific, 2008.CrossRefGoogle Scholar
  13. 13.
    Mukasyan, A.S. and Dinka, P., Novel approaches to solution-combustion synthesis of nanomaterials, Int. J. SHS, 2007, vol. 16, no. 1, pp. 23–35.Google Scholar
  14. 14.
    Martirosyan, K.S., Carbon combustion synthesis of ceramic oxides nanopowders, Adv. Sci. Technol., 2010, vol. 63, pp. 236–245.CrossRefGoogle Scholar
  15. 15.
    Bichurov G.V., Halides in SHS azide technology of nitrides obtaining, in: Nitride Ceramics: Combustion synthesis, properties, and applications, Gromov, A.A. and Chukhlomina, L.N., Weinheim: Wiley, 2015, pp. 229–263.Google Scholar
  16. 16.
    Nersisyan, H.H., Lee, J.H., and Won, C.W., SHS for a large scale synthesis method of transition metal nanopowders, Int. J. SHS, 2003, vol. 12, no. 1, pp. 149–158.Google Scholar
  17. 17.
    Zakorzhevskii, V.V. and Borovinskaya, I.P., Some regularities of α-Si3N4 synthesis in a commercial SHS reactor, Int. J. SHS, 2000, vol. 9, no. 2, pp. 171–191.Google Scholar
  18. 18.
    Zakorzhevskii, V.V. and Borovinskaya, I.P., SHS of α-Si3N4 from fine Si powders in the presence of blowing agents, Int. J. SHS, 2011, vol. 20, no. 3, pp. 156–160.Google Scholar
  19. 19.
    Chukhlomina, L.N., Ivanov, Yu.F., Maksimov, Yu.M., Akhunova, Z.S., and Krivosheeva, E.N., Preparation of submicron silicon nitride powders via self-propagating high-temperature synthesis, Powder Metall. Met. Ceram., 2007, vol. 46, no. 1, pp. 8–11.Google Scholar
  20. 20.
    Wang, Q., Liu, G., Yang, J., Chen, Y., and Li, J., Preheating-assisted combustion synthesis of β-Si3N4 powders at low N2 pressure, Mater. Res. Bull., 2013, vol. 48, no. 3, pp. 1321–1323.CrossRefGoogle Scholar
  21. 21.
    Yang, J., Han, L., Chen, Y., Liu, G., Lin, Z., and Li, J., Effects of pelletization of reactants and diluents on the combustion synthesis of Si3N4 powder, J. Alloys Compd., 2012, vol. 511, no. 1, pp. 81–84.CrossRefGoogle Scholar
  22. 22.
    Cui, W., Zhu, Y., Ge, Y., Kang, F., Yuan, X., and Chen, K., Effects of nitrogen pressure and diluent content on the morphology of gel-cast-foam-assisted combustion synthesis of elongated β-Si3N4 particles, Ceram. Int., 2014, vol. 40, no. 8, pp. 12553–12560.CrossRefGoogle Scholar
  23. 23.
    Nitride Ceramics: Combustion Synthesis, Properties, and Applications, Gromov, L.N., and Chukhlomina, L.N., Eds., Weinheim: Wiley, 2015.Google Scholar
  24. 24.
    Mukasyan, A.S., Lin, Ya-Ch., Rogachev, A.S., and Moskovskikh, D.O., Direct combustion synthesis of silicon carbide nanopowder from the elements, J. Am. Ceram. Soc., 2013, vol. 96, no. 1, pp. 111–117.CrossRefGoogle Scholar
  25. 25.
    Moskovskikh, D.O., Lin, Ya-C., Rogachev, A.S., McGinn, P.J., and Mukasyan, A.S., Spark plasma sintering of SiC powders produced by different combustion synthesis routes, J. Eur. Ceram. Soc., 2015, vol. 35, pp. 477–486.CrossRefGoogle Scholar
  26. 26.
    Palmero, P., Structural ceramic nanocomposites: a review of properties and powders’ synthesis methods, Nanomaterials, 2015, vol. 5, no. 2, pp. 656–696.CrossRefGoogle Scholar
  27. 27.
    Zakorzhevskii, V.V., Borovinskaya, I.P., Chevykalova, L.A., and Kelina, I.Ya., Combustion synthesis of α-Si3N4- (MgO, Y2O3) composites, Powder Metall. Met. Ceram., 2007, vol. 46, nos. 1–2, pp. 8–12.CrossRefGoogle Scholar
  28. 28.
    Zhao, Y.S., Yang, Y., Li, J.T., Borovinskaya, I.P., and Smirnov, K.L., Combustion synthesis and tribological properties of sialon-based ceramic composites, Int. J. SHS, 2010, vol. 19, no. 3, pp. 172–177.Google Scholar
  29. 29.
    Smirnov, K.L., Combustion synthesis of hetero-modulus SiAlON–BN composites, Int. J. SHS, 2015, vol. 24, no. 4, pp. 220–226.Google Scholar
  30. 30.
    Zhang, Y., He, X., Han, J., and Du, Sh., Combustion synthesis of hexagonal boron nitride-based ceramics, J. Mater. Process. Technol., 2001, vol. 116, pp. 161–164.CrossRefGoogle Scholar
  31. 31.
    Zhang, G.-J., Yang, J.-F., Ando, M., and Ohji, T., Nonoxide-boron nitride composites: in situ synthesis, microstructure and properties, J. Eur. Ceram. Soc., 2002, vol. 22, nos. 14–15, pp. 2551–2554.CrossRefGoogle Scholar
  32. 32.
    Carrapichano, J.M., Gomes, J.R., and Silva, R.F., Tribological behavior of Si3N4–BN ceramic materials for dry sliding applications, Wear, 2002, vol. 253, pp. 1070–1076.CrossRefGoogle Scholar
  33. 33.
    Amosov, A.P., Shiganova, L.A., Bichurov, G.V., and Kerson, I.A., Combustion synthesis of TiN–BN nanostructured composite powder with the use of sodium azide and precursors of titanium and boron, Modern Appl. Sci., 2015, vol. 9, no. 3, pp. 133–144.CrossRefGoogle Scholar
  34. 34.
    He, W., Zhang, B., Zhuang, H., and Li, W., Combustion synthesis of Si3N4–TiN composite powders, Ceram. Int., 2004, vol. 30, no. 8, pp. 2211–2214.CrossRefGoogle Scholar
  35. 35.
    Evdokimov, A.A., Sivkov, A.A., and Gerasimov, D.Yu., Obtaining ceramic based on Si3N4 and TiN by spark plasma sintering, Glass Ceram., 2016, vol. 72, no. 9, pp. 381–386.CrossRefGoogle Scholar
  36. 36.
    Yoshimura, M., Komura, O., and Yamakawa, A., Microstructure and tribological properties of nanosized Si3N4, Scr. Mater., 2001, vol. 44, pp. 1517–1521.CrossRefGoogle Scholar
  37. 37.
    Tatami, J., Kodama, E., Watanabe, H., Nakano, H., Wakihara, T., Komeya, K., Meguro, T., and Azushima, A., Fabrication and wear properties of tin nanoparticledispersed Si3N4 ceramics, J. Ceram. Soc. Jap, 2008, vol. 116, no. 6, pp. 749–754.CrossRefGoogle Scholar
  38. 38.
    Kata, D., Ohyanagi, M., and Munir, Z.A., Inductionfield-activated self-propagating high-temperature synthesis of AlN-SiC solid solutions in the Si3N4–Al–C system, J. Mater. Res., 2000, vol. 15, no. 11, pp. 2514–2525.CrossRefGoogle Scholar
  39. 39.
    Vallauri, D., Atias Adrian, I.C., and Chrysanthou, A., TiC–TiB2 composites: a review of phase relationships, processing and properties, J. Eur. Ceram. Soc., 2008, vol. 28, no. 8, pp. 1697–1713.CrossRefGoogle Scholar
  40. 40.
    Vallauri, D., DeBenedetti, B.L., Jaworska, Klimczyk, P., and Rodriguez, M.A., Wear-resistant ceramic and metalceramic ultrafine composites fabricated from combustion synthesized metastable powders, Int. J. Refract. Met. Hard Mater, 2009, vol. 27, no. 6, pp. 996–1003.CrossRefGoogle Scholar
  41. 41.
    Barsoum, M.W., MAX Phases. Properties of Machinable Ternary Carbides and Nitrides, Weinheim: Wiley, 2013.CrossRefGoogle Scholar
  42. 42.
    Myhra, S., Summers, J.W.B., and Kisi, E.H., Ti3SiC2 a layered ceramics exhibiting ultra-low friction, Mater. Lett., 1999, vol. 39, no. 1, pp. 6–11.CrossRefGoogle Scholar
  43. 43.
    Meng, F., Liang, B., and Wang, M., Investigation of formation mechanism of Ti3SiC2 by self-propagating high-temperature synthesis, Int. J. Refract. Met. Hard Mater., 2013, vol. 41, pp. 152–161.CrossRefGoogle Scholar
  44. 44.
    Davydov, D.M., Amosov, A.P., and Latukhin, E.I., Synthesis of max-phase of titanium silicon carbide (Ti3SiC2) as a promising electric contact material by SHS pressing method, Appl. Mech. Mater., 2015, vol. 792, pp. 596–601.CrossRefGoogle Scholar
  45. 45.
    Shi, X., Wang, M., Zhai, W., Xu, Z., Zhang, Q., and Chen, Y., Influence of Ti 3 SiC 2 content on tribological properties of NiAl matrix self-lubricating composites, Mater. Design, 2013, vol. 45, pp. 179–189.CrossRefGoogle Scholar
  46. 46.
    Rohatgi, P.K., Tabandeh-Khorsid, M., and Omrani, E., Chapter 8. Tribology of metal-matrix composites, in: Tribology for Scientists and Engineers: From Basics to Advanced Concepts, Menezes P.L., Eds., New York: Springer, 2013.Google Scholar
  47. 47.
    Levashov, E., Kurbatkina, V., and Zaytsev, A., Improved mechanical and tribological properties of metal-matrix composites dispersion-strengthened by nanoparticles, Materials, 2010, no. 3, pp. 97–109.CrossRefGoogle Scholar
  48. 48.
    Rapoport, L., Leshchinsky, V., Lvovsky, I., Volovik, Yu., Feldman, Y., Popovitz-Biro, R., and Tenne, R., Superior tribological properties of powder materials with solid lubricant nanoparticles, Wear, 2003, vol. 255, nos. 7–12, pp. 794–800.CrossRefGoogle Scholar
  49. 49.
    Pogozhev, Yu.S., Potanin, A.Yu., Levashov, E.A., Kochetov, N.A., Kovalev, D.Yu., and Rogachev, A.S., SHS of TiC–TiNi composites: effect of initial temperature and nanosized refractory additives, Int. J. SHS, 2012, vol. 21, no. 4, pp. 202–211.Google Scholar
  50. 50.
    Amosov, A.P., Fedotov, A.F., Latukhin, E.I., and Novikov, V.A., TiC–Al interpenetrating composites by SHS pressing, Int. J. SHS, 2015, vol. 24, no. 4, pp. 187–191.Google Scholar
  51. 51.
    Fedotov, A.F., Amosov, A.P., Latukhin, E.I., and Novikov, V.A., Production of aluminum-ceramic skeleton composites based on the Ti2AlC MAX-phase the of SHS-compaction method, Izv. Vyssh. Uchebn. Zaved. Poroshk. Metall. Tsvetn. Metall., 2015, no. 6, pp. 53–62.CrossRefGoogle Scholar
  52. 52.
    Xue, Q.J. and La, P.Q., Combustion synthesized bulk nanocrystalline materials and intermetallic matrix composites and their tribological properties, Chin. J. Nonferrous Met., 2004, vol. 14, no. 1, pp. 128–137.Google Scholar
  53. 53.
    La, P.Q., Wang, H.D., Bai, Y.P., Yang, Y., Wei, Y.P., Lu, X.F., Zhao, Y., and Cheng, C.J., Microstructures and mechanical properties of bulk nanocrystalline Fe3Al materials with 5, 10, and 15 wt % Cr prepared by aluminothermic reaction, Mater. Sci. Eng. A, 2011, vol. 528, no. 21, pp. 6489–6496.CrossRefGoogle Scholar
  54. 54.
    Sanin, V., Andreev, D., Ikornikov, D., and Yukhvid, V., Cast intermetallic alloys and composites based on them by combined centrifugal casting—SHS process, Open J. Metal., 2013, no. 3, pp. 12–24.CrossRefGoogle Scholar
  55. 55.
    Nabavi, A., Goroshin, S., Frost, G.L., and Barthelat, F., Mechanical properties of chromium-chromium sulfide cermets fabricated by self-propagating high-temperature synthesis, J. Mater. Sci., 2015, vol. 50, pp. 3434–3446.CrossRefGoogle Scholar
  56. 56.
    Tomoshige, R., Niitsu, K., Sekiguchi, T., Oikawa, K., and Ishida, K., Some tribological properties of SHSproduced chromium sulfide, Int. J. SHS, 2009, vol. 18, no. 4, pp. 287–292.Google Scholar
  57. 57.
    Kalashnikov, I.E., Bolotova, L.K., and Chernyshova, T.A., Tribological characteristics of cast aluminum-matrix composites, modified by nanosized refractory powders, Ross. Nanotekhnol., 2011, vol. 6, nos. 1–2, pp. 144–153.CrossRefGoogle Scholar
  58. 58.
    Amosov, A.P., Nikitin, V.I., Nikitin, K.V., Ryazanov, S.A., and Ermoshkin, A.A., Tcientific and technical basis for the use of SHS processes for creating cast aluminum matrix composite alloys, reinforced with discrete ceramic nanoparticles, Naukoemk. Tekhnol. Mashinostr., 2013, no. 8, pp. 3–10.Google Scholar
  59. 59.
    Amosov, A.P., Titova, Yu.V., Maydan, D.A., Ermoshkin, A.A., and Timoshkin, I.Yu., Application of the nanopowder production of azide SHS technology for the reinforcement and modification of aluminum alloys, Rus. J. Non-Ferrous Met., 2015, vol. 56, no. 2, pp. 222–228.CrossRefGoogle Scholar
  60. 60.
    Amosov, A.P., Luts, R.A., Latukhin, E.I., and Ermoshkin, A.A., Application of SHS processes for in situ preparation of alumomatrix composite materials discretely reinforced by nanodimensional titanium carbide particles (review), Rus. J. Non-Ferrous Met., 2016, vol. 57, no. 2, pp. 106–112.CrossRefGoogle Scholar
  61. 61.
    Shtansky, D.V., Bondarev, A.V., Kiryukhantsev-Korneev, F.V., and Levashov, E.A., Antifriction nanocomposite coatings for innovative tribological systems, Metalloved. Term. Obrab. Met., 2015, no. 7, pp. 77–84.Google Scholar
  62. 62.
    Sanin, V.N., Ikornikov, D.M., Andreev, D.E., Yukhvid, V.I., Derin, B., and Yucel, O., Protective Mo2NiB2–Ni coatings by centrifugal metallothermic SHS, Int. J. SHS, 2015, vol. 24, no. 3, pp. 161–170.Google Scholar
  63. 63.
    Gorshkov, V.A., Kachin, A.R., and Yukhvid, V.I., SHS-metallurgy of cast composite material Cr3C2–NiAl and protective coatings based on it, Perspekt. Mater., 2014, no. 10, pp. 60–67.Google Scholar
  64. 64.
    Bazhin, P.M., Stolin, A.M., Alymov, M.I., and Chizhikov, A.P., Peculiarities of obtaining long products of ceramic material with a nanosize structure by SHS extrusion, Perspekt. Mater., 2014, no. 11, pp. 73–81.Google Scholar
  65. 65.
    Stolin, A.M., Bazhin, P.M., Mikheev, M.V., Averichev, O.A., Saguidollayev, A.S., and Kylyshbaev, K.T., Deposition of protective coatings by electric arc cladding with SHS electrodes, Weld. Int. 2015, vol. 29, no. 8, pp. 657–660.CrossRefGoogle Scholar
  66. 66.
    Stepanova, I.V., Panin, S.V., Durakov, V.G., and Korchagin, M.A., Modification of the structure of powder coatings on nickel and chromium–nickel-bases by introducing nanoparticles of titanium diboride during electron-beam surfacing, Izv. Vyssh. Uchebn. Zaved. Poroshk. Metall. Funkts. Pokryt., 2011, no. 1, pp. 68–74.Google Scholar
  67. 67.
    Makhlouf A.S.H., Current and advanced coating technologies for industrial applications, in: Nanocoatings and Ultra-Thin Films: Technologies and Applications. Makhlouf, A.S.H. and Tiginyanu, I., Eds., Cambridge: Woodhead, 2011, pp. 3–23.CrossRefGoogle Scholar
  68. 68.
    Kalita, V.I. and Komlev, D.I., Plazmennye pokrytiya s nanokristallicheskoi i amorfnoi strukturoi (Plasma Coatings with Nanocrystalline and Amorphous Structure), Moscow: Lider M, 2008.Google Scholar
  69. 69.
    Pawlowski, L., Finely grained nanometric and submicrometric coatings by thermal spraying: a review, Surf. Coat. Technol., 2008, vol. 202, pp. 4318–4328.CrossRefGoogle Scholar
  70. 70.
    Lomovsky, O.I., Dudina, D.V., Ulianitsky, V.Yu., Zlobin, S.B., Kosarev, V.F., Klinkov, S.V., Korchagin, M.A., Know, D.-H., Kim, J.-S., and Know, Y.-S., Cold and detonation spraying of TiB2–Cu nanocomposites, Mater. Sci. Forum, 2007, vol. 534-536, pp. 1371–1376.Google Scholar
  71. 71.
    Levashov, E.A., Pogozhev, Yu.S., Kudryashov, A.E., Senatulin, B.R., and Moore, J.J., Studying the effect of various nature zirconia nanocrystalline powder additions on composition and physical-chemical properties of SHIM-3B hard alloy, Phys. Met. Metallogr., 2003, vol. 96, no. 2, pp. 1–7.Google Scholar
  72. 72.
    Levashov, E.A., Pogozhev, Yu.S., Kudryashov, A.E., Rupasov, S.I., and Levina, V.V., Composite materials based on TiC–Ni for the spark alloying dispersionstrengthened with nanoparticles, Izv. Vyssh. Uchebn. Zaved. Poroshk. Metall. Funkts. Pokryt., 2008, no. 2, pp. 17–24.Google Scholar
  73. 73.
    Kudryashov, A.E., Levashov, E.A., Vetrov, N.V., Shalkevich, A.B., Ivanov, E.V., and Solntseva, I.S., New class of electric-spark coatings for products made of titanium alloys operating in extreme conditions, Izv. Vyssh. Uchebn. Zaved. Poroshk. Metall. Funkts. Pokryt., 2008, no. 3, pp. 34–45.Google Scholar
  74. 74.
    Levashov, E.A., Kudryashov, A.E., Doronin, O.N., and Krakht, V.B., On the application of SHS-electrode materials for the electrospark hardening of rolls for hot rolling mill, Rus. J. Non-Ferrous Met., 2014, vol. 55, no. 4, pp. 394–402.CrossRefGoogle Scholar
  75. 75.
    Manakova, O.S., Kudryashov, A.E., and Levashov, E.A., On the application of dispersion hardened SHS electrode materials based on (Ti, Zr)C carbide using electrospark deposition, Surf. Eng. Appl. Electrochem, 2015, vol. 51, no. 5, pp. 413–421.CrossRefGoogle Scholar
  76. 76.
    Panteleenko, F.I., Sarantsev, V.V., Stolin, A.M., Bazhin, P.M., and Azarenko, E.L., Formation of composite coatings based on titanium carbide by electric spark alloying, Elektron. Obrab. Mater., 2011, vol. 47, no. 4, pp. 106–115.Google Scholar
  77. 77.
    Levashov, E.A. and Shtansky, D.V., Multifunctional nanostructured films, Usp. Khim., 2007, vol. 76, no. 5, pp. 501–509.CrossRefGoogle Scholar
  78. 78.
    Kiryukhantsev-Korneev, F.V., Sheveiko, A.N., Komarov, V.A., Blanter, M.S., Skryleva, E.A., Shirmanov, N.A., Levashov, E.A., and Shtansky, D.V., Nanostructured Ti–Cr–B–N and Ti–Cr–Si–C–N coatings for hard-alloys cutting tools, Rus. J. Non-Ferrous Met., 2011, vol. 52, no. 3, pp. 311–318.CrossRefGoogle Scholar
  79. 79.
    Fedotov, A.F., Amosov, A.P., Ermoshkin, A.A., Lavro, V.N., Altukhov, S.I., Latukhin, E.I., and Davydov, D.M., Composition, structure and properties of SHS-compacted cathodes of the Ti–C–Al–Si system and vacuum-arc coatings obtained from them, Rus. J. Non-Ferrous Met., 2014, vol. 55, no. 5, pp. 477–484.CrossRefGoogle Scholar
  80. 80.
    Walsh, F.C., Ponce de Leon, C., A review of the electrodeposition of metal matrix composite coatings by inclusion of particles in a metal layer: an established and diversifying technology, Trans. Inst. Mater. Finish., 2014, vol. 92, no. 2, pp. 83–98.CrossRefGoogle Scholar
  81. 81.
    Ahmad, Y.H. and Mohamed, A.M.A., Electrodeposition of nanostructured nickel-ceramic composite coatings: a review, Int. J. Electrochem. Sci., 2014, vol. 9, pp. 1492–1963.Google Scholar
  82. 82.
    Sudagar, J., Lian, J., and Sha, W., Electroless nickel, alloy, composite and nanocoatings: a critical review, J. Alloys Compd., 2013, vol. 571, pp. 183–204.CrossRefGoogle Scholar
  83. 83.
    Narayanan, T.S.N.S., Seshadri, S.K., II Park, S., and Lee, M.H., Electroless nanocomposite coatings: synthesis, characteristics, and applications, in: Handbook of Nanoelectrochemistry: Electrochemical Synthesis Methods, Properties and Characterization Techniques, Aliofkhazraei, M. and Makhlouf, A.S.H., Eds., Springer, 2015, pp. 1–23.Google Scholar
  84. 84.
    Borodin, I.M., Poroshkovaya gal’vanotekhnika (Powder Electroplating), Moscow: Mashinostroenie, 1990.Google Scholar
  85. 85.
    Ashby, M.F., Chapter 4. Material property charts, in: Materials Selection in Mechanical Design, Ed. M.F. Ashby, Ed., Oxford: Butterworth–Heinemann, 2011, 4th ed., pp. 57–96.CrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2017

Authors and Affiliations

  1. 1.Samara State Technical UniversitySamaraRussia

Personalised recommendations