Skip to main content
Log in

On Optimal Cardinal Interpolation

  • Published:
Mathematical Methods of Statistics Aims and scope Submit manuscript

Abstract

For the Hardy classes of functions analytic in the strip around real axis of a size 2β, an optimal method of cardinal interpolation has been proposed within the framework of Optimal Recovery [12]. Below this method, based on the Jacobi elliptic functions, is shown to be optimal according to the criteria of Nonparametric Regression and Optimal Design.

In a stochastic non-asymptotic setting, the maximal mean squared error of the optimal interpolant is evaluated explicitly, for all noise levels away from 0. A pivotal role is played by the interference effect, in which the oscillations exhibited by the interpolant’s bias and variance mutually cancel each other. In the limiting case β → ∞, the optimal interpolant converges to the well-knownNyquist–Shannon cardinal series.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. I. Akhiezer, Elements of the Theory of Elliptic Functions (AMS, Providence, R.I., 1970).

    Google Scholar 

  2. L. Artiles and B. Levit, “Adaptive Regression on the Real Line in Classes of Smooth Functions”, Austrian J. Statist. 32, 99–129 (2003).

    Google Scholar 

  3. H. Bateman and A. Erdélyi, Higher Transcendental Functions (McGraw-Hill, New York, 1955), Vol. 2.

    MATH  Google Scholar 

  4. R. P. Boas, Entire Functions (Academic Press, New York, 1954).

    MATH  Google Scholar 

  5. J. Cho and B. Levit, “Asymptotic Optimality of Periodic Spline Interpolation in Nonparametric Regression”, J. Statist. Theory Pract. 2, 465–474 (2008).

    Article  MATH  Google Scholar 

  6. Y. Golubev, B. Levit, and A. Tsybakov, “Asymptotically Efficient Estimation of Analytic Functions in Gaussian Noise”, Bernoulli 2, 167–181 (1996).

    Article  MathSciNet  MATH  Google Scholar 

  7. I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products (Academic Press, New York, 1994), 5th ed.

    MATH  Google Scholar 

  8. I. Ibragimov, “Estimation of Analytic Functions”, in IMS Lecture Notes Monogr. Ser. 36 (2001), pp. 359–383.

    Article  MathSciNet  MATH  Google Scholar 

  9. B. Ya. Levin, Yu. Lyubarski, M. Sodin, and V. Tkachenko, Lectures on Entire Functions (AMS, Providence, RI, 1996).

    Book  Google Scholar 

  10. B. Levit, “Some New Perspectives in Best Approximation and Interpolation of Random Data”, Math. Meth. Statist. 22, 165–192 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  11. B. Levit, “Variance-Optimal Data Approximation Using the Abel–Jacobi Functions”, Math. Meth. Statist. 24, 37–54 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  12. B. Levit, “Optimal Methods of Interpolation in Nonparametric Regression”, Math. Meth. Statist. 25, 235–261 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  13. A. I.Markushevich, The Theory of Functions of a Complex Variable (Chelsea Publ., New York, 1985).

    Google Scholar 

  14. K. Yu. Osipenko, Optimal Recovery of Analytic Functions (Nova Science Publ., New York, 2000).

    Google Scholar 

  15. A. Papoulis, Signal Analysis (McGraw-Hill, New York, 1977).

    MATH  Google Scholar 

  16. W. Rudin, Real and Complex Analysis (McGraw-Hill, New York, 1987), 3d ed.

    MATH  Google Scholar 

  17. I. J. Schoenberg, Cardinal Spline Interpolation (SIAM, Philadelphia, PA, 1973).

    Book  MATH  Google Scholar 

  18. A. N. Shiryaev, Probability-1, in Graduate Texts in Mathematics (Springer, New York, 2016), 3rd ed.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Levit.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Levit, B. On Optimal Cardinal Interpolation. Math. Meth. Stat. 27, 245–267 (2018). https://doi.org/10.3103/S1066530718040014

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1066530718040014

Keywords

2000 Mathematics Subject Classification

Navigation