Abstract
It is proved: if \(\phi(\tau,\xi)\) is a scalar continuous real function of arguments \(\tau\in [a_{(n-1)},\ b_{(n-1)}]\subset R^{n-1},\) \(\xi \in [a,\ b]\subset R^{1}\) and \(\phi(\tau,a)\phi(\tau,b)<0\) for all \(\tau,\) then for all \(\varepsilon >0\) there exists a continuous function \(\phi_{0}(\tau,\xi)\) such that \(|\phi(\tau,\xi)-\phi_{0}(\tau,\xi)|<\varepsilon,\) and the equation \(\phi_{0}(\tau,\xi)=0\) has a solution continuously dependent on \(\tau\). The assertion is applied to the proof of the solvability of a finite system of nonlinear equations, to the estimation of the number of solutions. We give illustrating examples.
This is a preview of subscription content, access via your institution.
REFERENCES
- 1
Danilov, V.I. Lectures on Fixed Points (Rossiiskaya Ekonomicheskaya Shkola, Moscow, 2006) [in Russian].
- 2
Petrovskii, I.G. Lectures on Theory of Ordinary Differential Equations (Izdatelstvo MGU, Moscow, 1984) [in Russian].
- 3
Nirenberg, L. Topics in Nonlinear Functional Analysis (Lecture Notes, Courant Inst., 1974; Mir, Moscow, 1977).
- 4
Bolzano, B. Rein analytischer Beweis dass Lehrsatzes, dass zwischen je zwei Werthen, die ein entgegengesetztes Resultat gewähren, wenigstens eine reelle Wurzel der Gleichung liege, Math. P. 47 d. (Haase, Prag, 1817).
- 5
Mokeychev, V.S. “The Brower Theorem on Fixed Points (Simple Proof, Clarifications)” (in: Modern Problems of Theory of Functions and their Applications, Proceedings of 16 Saratov Winter School, pp. 122–123 (Saratov, 2012)).
- 6
Filippov, I.E., Mokeychev, V.S. “The Least Root of a Continuous Function”, Lobachevskii J. Math. 39 (2), 200–203 (2018).
Author information
Affiliations
Corresponding author
Additional information
Russian Text © The Author(s), 2021, published in Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 2021, No. 1, pp. 3–10.
About this article
Cite this article
Mokeychev, V.S. The Solvability of a System of Nonlinear Equations. Russ Math. 65, 1–7 (2021). https://doi.org/10.3103/S1066369X21010011
Received:
Revised:
Accepted:
Published:
Issue Date:
Keywords
- equation
- smallest solution
- continuity of solution
- non uniqueness of solution